• Archive by category "程序算法"
  • (Page 4)

Blog Archives

用Maven构建Mahout项目

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mahout-maven-eclipse/

mahout-maven-logo

前言

基于Hadoop的项目,不管是MapReduce开发,还是Mahout的开发都是在一个复杂的编程环境中开发。Java的环境问题,是困扰着每个程序员的噩梦。Java程序员,不仅要会写Java程序,还要会调linux,会配hadoop,启动hadoop,还要会自己运维。所以,新手想玩起Hadoop真不是件简单的事。

不过,我们可以尽可能的简化环境问题,让程序员只关注于写程序。特别是像算法程序员,把精力投入在算法设计上,要比花时间解决环境问题有价值的多。

目录

  1. Maven介绍和安装
  2. Mahout单机开发环境介绍
  3. 用Maven构建Mahout开发环境
  4. 用Mahout实现协同过滤userCF
  5. 用Mahout实现kmeans
  6. 模板项目上传github

1. Maven介绍和安装

请参考文章:用Maven构建Hadoop项目

开发环境

  • Win7 64bit
  • Java 1.6.0_45
  • Maven 3
  • Eclipse Juno Service Release 2
  • Mahout 0.6

这里要说明一下mahout的运行版本。

  • mahout-0.5, mahout-0.6, mahout-0.7,是基于hadoop-0.20.2x的。
  • mahout-0.8, mahout-0.9,是基于hadoop-1.1.x的。
  • mahout-0.7,有一次重大升级,去掉了多个算法的单机内存运行,并且了部分API不向前兼容。

注:本文关注于“用Maven构建Mahout的开发环境”,文中的 2个例子都是基于单机的内存实现,因此选择0.6版本。Mahout在Hadoop集群中运行会在下一篇文章介绍。

2. Mahout单机开发环境介绍

hadoop-mahout-dev

如上图所示,我们可以选择在win中开发,也可以在linux中开发,开发过程我们可以在本地环境进行调试,标配的工具都是Maven和Eclipse。

3. 用Maven构建Mahout开发环境

  • 1. 用Maven创建一个标准化的Java项目
  • 2. 导入项目到eclipse
  • 3. 增加mahout依赖,修改pom.xml
  • 4. 下载依赖

1). 用Maven创建一个标准化的Java项目


~ D:\workspace\java>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes 
-DgroupId=org.conan.mymahout -DartifactId=myMahout -DpackageName=org.conan.mymahout -Dversion=1.0-SNAPSHOT -DinteractiveMode=false

进入项目,执行mvn命令


~ D:\workspace\java>cd myMahout
~ D:\workspace\java\myMahout>mvn clean install

2). 导入项目到eclipse

我们创建好了一个基本的maven项目,然后导入到eclipse中。 这里我们最好已安装好了Maven的插件。

mahout-eclipse-folder

3). 增加mahout依赖,修改pom.xml

这里我使用hadoop-0.6版本,同时去掉对junit的依赖,修改文件:pom.xml


<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.conan.mymahout</groupId>
<artifactId>myMahout</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>myMahout</name>
<url>http://maven.apache.org</url>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<mahout.version>0.6</mahout.version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>${mahout.version}</version>
</dependency>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-integration</artifactId>
<version>${mahout.version}</version>
<exclusions>
<exclusion>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.cassandra</groupId>
<artifactId>cassandra-all</artifactId>
</exclusion>
<exclusion>
<groupId>me.prettyprint</groupId>
<artifactId>hector-core</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</project>

4). 下载依赖

~ mvn clean install

在eclipse中刷新项目:

mahout-eclipse-package

项目的依赖程序,被自动加载的库路径下面。

4. 用Mahout实现协同过滤userCF

Mahout协同过滤UserCF深度算法剖析,请参考文章:用R解析Mahout用户推荐协同过滤算法(UserCF)

实现步骤:

  • 1. 准备数据文件: item.csv
  • 2. Java程序:UserCF.java
  • 3. 运行程序
  • 4. 推荐结果解读

1). 新建数据文件: item.csv


~ mkdir datafile
~ vi datafile/item.csv

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

数据解释:每一行有三列,第一列是用户ID,第二列是物品ID,第三列是用户对物品的打分。

2). Java程序:UserCF.java

Mahout协同过滤的数据流,调用过程。

mahout-recommendation-process

上图摘自:Mahout in Action

新建JAVA类:org.conan.mymahout.recommendation.UserCF.java


package org.conan.mymahout.recommendation;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class UserCF {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws IOException, TasteException {
        String file = "datafile/item.csv";
        DataModel model = new FileDataModel(new File(file));
        UserSimilarity user = new EuclideanDistanceSimilarity(model);
        NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
        Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
        LongPrimitiveIterator iter = model.getUserIDs();

        while (iter.hasNext()) {
            long uid = iter.nextLong();
            List list = r.recommend(uid, RECOMMENDER_NUM);
            System.out.printf("uid:%s", uid);
            for (RecommendedItem ritem : list) {
                System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
            }
            System.out.println();
        }
    }
}

3). 运行程序
控制台输出:


SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
uid:1(104,4.274336)(106,4.000000)
uid:2(105,4.055916)
uid:3(103,3.360987)(102,2.773169)
uid:4(102,3.000000)
uid:5

4). 推荐结果解读

  • 向用户ID1,推荐前二个最相关的物品, 104和106
  • 向用户ID2,推荐前二个最相关的物品, 但只有一个105
  • 向用户ID3,推荐前二个最相关的物品, 103和102
  • 向用户ID4,推荐前二个最相关的物品, 但只有一个102
  • 向用户ID5,推荐前二个最相关的物品, 没有符合的

5. 用Mahout实现kmeans

  • 1. 准备数据文件: randomData.csv
  • 2. Java程序:Kmeans.java
  • 3. 运行Java程序
  • 4. mahout结果解读
  • 5. 用R语言实现Kmeans算法
  • 6. 比较Mahout和R的结果

1). 准备数据文件: randomData.csv


~ vi datafile/randomData.csv

-0.883033363823402,-3.31967192630249
-2.39312626419456,3.34726861118871
2.66976353341256,1.85144276077058
-1.09922906899594,-6.06261735207489
-4.36361936997216,1.90509905380532
-0.00351835125495037,-0.610105996559153
-2.9962958796338,-3.60959839525735
-3.27529418132066,0.0230099799641799
2.17665594420569,6.77290756817957
-2.47862038335637,2.53431833167278
5.53654901906814,2.65089785582474
5.66257474538338,6.86783609641077
-0.558946883114376,1.22332819416237
5.11728525486132,3.74663871584768
1.91240516693351,2.95874731384062
-2.49747101306535,2.05006504756875
3.98781883213459,1.00780938946366

这里只截取了一部分,更多的数据请查看源代码。

注:我是通过R语言生成的randomData.csv


x1<-cbind(x=rnorm(400,1,3),y=rnorm(400,1,3))
x2<-cbind(x=rnorm(300,1,0.5),y=rnorm(300,0,0.5))
x3<-cbind(x=rnorm(300,0,0.1),y=rnorm(300,2,0.2))
x<-rbind(x1,x2,x3)
write.table(x,file="randomData.csv",sep=",",row.names=FALSE,col.names=FALSE)

2). Java程序:Kmeans.java

Mahout中kmeans方法的算法实现过程。

mahout-kmeans-process

上图摘自:Mahout in Action

新建JAVA类:org.conan.mymahout.cluster06.Kmeans.java


package org.conan.mymahout.cluster06;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.mahout.clustering.kmeans.Cluster;
import org.apache.mahout.clustering.kmeans.KMeansClusterer;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.Vector;

public class Kmeans {

    public static void main(String[] args) throws IOException {
        List sampleData = MathUtil.readFileToVector("datafile/randomData.csv");

        int k = 3;
        double threshold = 0.01;

        List randomPoints = MathUtil.chooseRandomPoints(sampleData, k);
        for (Vector vector : randomPoints) {
            System.out.println("Init Point center: " + vector);
        }

        List clusters = new ArrayList();
        for (int i = 0; i < k; i++) {
            clusters.add(new Cluster(randomPoints.get(i), i, new EuclideanDistanceMeasure()));
        }

        List<List> finalClusters = KMeansClusterer.clusterPoints(sampleData, clusters, new EuclideanDistanceMeasure(), k, threshold);
        for (Cluster cluster : finalClusters.get(finalClusters.size() - 1)) {
            System.out.println("Cluster id: " + cluster.getId() + " center: " + cluster.getCenter().asFormatString());
        }
    }

}

3). 运行Java程序
控制台输出:


Init Point center: {0:-0.162693685149196,1:2.19951550286862}
Init Point center: {0:-0.0409782183083317,1:2.09376666042057}
Init Point center: {0:0.158401778474687,1:2.37208412905273}
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
Cluster id: 0 center: {0:-2.686856800552941,1:1.8939462954763795}
Cluster id: 1 center: {0:0.6334255423230666,1:0.49472852972602105}
Cluster id: 2 center: {0:3.334520309711998,1:3.2758355898247653}

4). mahout结果解读

  • 1. Init Point center表示,kmeans算法初始时的设置的3个中心点
  • 2. Cluster center表示,聚类后找到3个中心点

5). 用R语言实现Kmeans算法
接下来为了让结果更直观,我们再用R语言,进行kmeans实验,操作相同的数据。

R语言代码:


> y<-read.csv(file="randomData.csv",sep=",",header=FALSE) 
> cl<-kmeans(y,3,iter.max = 10, nstart = 25) 
> cl$centers
          V1         V2
1 -0.4323971  2.2852949
2  0.9023786 -0.7011153
3  4.3725463  2.4622609

# 生成聚类中心的图形
> plot(y, col=c("black","blue","green")[cl$cluster])
> points(cl$centers, col="red", pch = 19)

# 画出Mahout聚类的中心
> mahout<-matrix(c(-2.686856800552941,1.8939462954763795,0.6334255423230666,0.49472852972602105,3.334520309711998,3.2758355898247653),ncol=2,byrow=TRUE) 
> points(mahout, col="violetred", pch = 19)

聚类的效果图:
kmeans-center

6). 比较Mahout和R的结果
从上图中,我们看到有 黑,蓝,绿,三种颜色的空心点,这些点就是原始的数据。

3个红色实点,是R语言kmeans后生成的3个中心。
3个紫色实点,是Mahout的kmeans后生成的3个中心。

R语言和Mahout生成的点,并不是重合的,原因有几点:

  • 1. 距离算法不一样:
    Mahout中,我们用的 “欧氏距离(EuclideanDistanceMeasure)”
    R语言中,默认是”Hartigan and Wong”
  • 2. 初始化的中心是不一样的。
  • 3. 最大迭代次数是不一样的。
  • 4. 点合并时,判断的”阈值(threshold)”是不一样的。

6. 模板项目上传github

https://github.com/bsspirit/maven_mahout_template/tree/mahout-0.6

大家可以下载这个项目,做为开发的起点。

 
~ git clone https://github.com/bsspirit/maven_mahout_template
~ git checkout mahout-0.6

我们完成了第一步,下面就将正式进入mahout算法的开发实践,并且应用到hadoop集群的环境中。

下一篇:Mahout分步式程序开发 基于物品的协同过滤ItemCF

转载请注明出处:
http://blog.fens.me/hadoop-mahout-maven-eclipse/

打赏作者

海量Web日志分析 用Hadoop提取KPI统计指标

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mapreduce-log-kpi/

hadoop-kpi-logo

前言

Web日志包含着网站最重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值等。一般中型的网站(10W的PV以上),每天会产生1G以上Web日志文件。大型或超大型的网站,可能每小时就会产生10G的数据量。

对于日志的这种规模的数据,用Hadoop进行日志分析,是最适合不过的了。

目录

  1. Web日志分析概述
  2. 需求分析:KPI指标设计
  3. 算法模型:Hadoop并行算法
  4. 架构设计:日志KPI系统架构
  5. 程序开发1:用Maven构建Hadoop项目
  6. 程序开发2:MapReduce程序实现

1. Web日志分析概述

Web日志由Web服务器产生,可能是Nginx, Apache, Tomcat等。从Web日志中,我们可以获取网站每类页面的PV值(PageView,页面访问量)、独立IP数;稍微复杂一些的,可以计算得出用户所检索的关键词排行榜、用户停留时间最高的页面等;更复杂的,构建广告点击模型、分析用户行为特征等等。

在Web日志中,每条日志通常代表着用户的一次访问行为,例如下面就是一条nginx日志:


222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939
 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"

拆解为以下8个变量

  • remote_addr: 记录客户端的ip地址, 222.68.172.190
  • remote_user: 记录客户端用户名称, –
  • time_local: 记录访问时间与时区, [18/Sep/2013:06:49:57 +0000]
  • request: 记录请求的url与http协议, “GET /images/my.jpg HTTP/1.1”
  • status: 记录请求状态,成功是200, 200
  • body_bytes_sent: 记录发送给客户端文件主体内容大小, 19939
  • http_referer: 用来记录从那个页面链接访问过来的, “http://www.angularjs.cn/A00n”
  • http_user_agent: 记录客户浏览器的相关信息, “Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36”

注:要更多的信息,则要用其它手段去获取,通过js代码单独发送请求,使用cookies记录用户的访问信息。

利用这些日志信息,我们可以深入挖掘网站的秘密了。

少量数据的情况

少量数据的情况(10Mb,100Mb,10G),在单机处理尚能忍受的时候,我可以直接利用各种Unix/Linux工具,awk、grep、sort、join等都是日志分析的利器,再配合perl, python,正则表达工,基本就可以解决所有的问题。

例如,我们想从上面提到的nginx日志中得到访问量最高前10个IP,实现很简单:


~ cat access.log.10 | awk '{a[$1]++} END {for(b in a) print b"\t"a[b]}' | sort -k2 -r | head -n 10
163.177.71.12   972
101.226.68.137  972
183.195.232.138 971
50.116.27.194   97
14.17.29.86     96
61.135.216.104  94
61.135.216.105  91
61.186.190.41   9
59.39.192.108   9
220.181.51.212  9

海量数据的情况

当数据量每天以10G、100G增长的时候,单机处理能力已经不能满足需求。我们就需要增加系统的复杂性,用计算机集群,存储阵列来解决。在Hadoop出现之前,海量数据存储,和海量日志分析都是非常困难的。只有少数一些公司,掌握着高效的并行计算,分步式计算,分步式存储的核心技术。

Hadoop的出现,大幅度的降低了海量数据处理的门槛,让小公司甚至是个人都能力,搞定海量数据。并且,Hadoop非常适用于日志分析系统。

2.需求分析:KPI指标设计

下面我们将从一个公司案例出发来全面的解释,如何用进行海量Web日志分析,提取KPI数据

案例介绍
某电子商务网站,在线团购业务。每日PV数100w,独立IP数5w。用户通常在工作日上午10:00-12:00和下午15:00-18:00访问量最大。日间主要是通过PC端浏览器访问,休息日及夜间通过移动设备访问较多。网站搜索浏量占整个网站的80%,PC用户不足1%的用户会消费,移动用户有5%会消费。

通过简短的描述,我们可以粗略地看出,这家电商网站的经营状况,并认识到愿意消费的用户从哪里来,有哪些潜在的用户可以挖掘,网站是否存在倒闭风险等。

KPI指标设计

  • PV(PageView): 页面访问量统计
  • IP: 页面独立IP的访问量统计
  • Time: 用户每小时PV的统计
  • Source: 用户来源域名的统计
  • Browser: 用户的访问设备统计

注:商业保密限制,无法提供电商网站的日志。
下面的内容,将以我的个人网站为例提取数据进行分析。

百度统计,对我个人网站做的统计!http://www.fens.me

基本统计指标:
hadoop-kpi-baidu

用户的访问设备统计指标:
hadoop-kpi-baidu2

从商业的角度,个人网站的特征与电商网站不太一样,没有转化率,同时跳出率也比较高。从技术的角度,同样都关注KPI指标设计。

3.算法模型:Hadoop并行算法

hadoop-kpi-log

并行算法的设计:
注:找到第一节有定义的8个变量

PV(PageView): 页面访问量统计

  • Map过程{key:$request,value:1}
  • Reduce过程{key:$request,value:求和(sum)}

IP: 页面独立IP的访问量统计

  • Map: {key:$request,value:$remote_addr}
  • Reduce: {key:$request,value:去重再求和(sum(unique))}

Time: 用户每小时PV的统计

  • Map: {key:$time_local,value:1}
  • Reduce: {key:$time_local,value:求和(sum)}

Source: 用户来源域名的统计

  • Map: {key:$http_referer,value:1}
  • Reduce: {key:$http_referer,value:求和(sum)}

Browser: 用户的访问设备统计

  • Map: {key:$http_user_agent,value:1}
  • Reduce: {key:$http_user_agent,value:求和(sum)}

4.架构设计:日志KPI系统架构

hadoop-kpi-architect

上图中,左边是Application业务系统,右边是Hadoop的HDFS, MapReduce。

  1. 日志是由业务系统产生的,我们可以设置web服务器每天产生一个新的目录,目录下面会产生多个日志文件,每个日志文件64M。
  2. 设置系统定时器CRON,夜间在0点后,向HDFS导入昨天的日志文件。
  3. 完成导入后,设置系统定时器,启动MapReduce程序,提取并计算统计指标。
  4. 完成计算后,设置系统定时器,从HDFS导出统计指标数据到数据库,方便以后的即使查询。

hadoop-kpi-process

上面这幅图,我们可以看得更清楚,数据是如何流动的。蓝色背景的部分是在Hadoop中的,接下来我们的任务就是完成MapReduce的程序实现。

5.程序开发1:用Maven构建Hadoop项目

请参考文章:用Maven构建Hadoop项目

win7的开发环境 和 Hadoop的运行环境 ,在上面文章中已经介绍过了。

我们需要放日志文件,上传的HDFS里/user/hdfs/log_kpi/目录,参考下面的命令操作


~ hadoop fs -mkdir /user/hdfs/log_kpi
~ hadoop fs -copyFromLocal /home/conan/datafiles/access.log.10 /user/hdfs/log_kpi/

我已经把整个MapReduce的实现都放到了github上面:

https://github.com/bsspirit/maven_hadoop_template/releases/tag/kpi_v1

6.程序开发2:MapReduce程序实现

开发流程:

  1. 对日志行的解析
  2. Map函数实现
  3. Reduce函数实现
  4. 启动程序实现

1). 对日志行的解析
新建文件:org.conan.myhadoop.mr.kpi.KPI.java


package org.conan.myhadoop.mr.kpi;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

/*
 * KPI Object
 */
public class KPI {
    private String remote_addr;// 记录客户端的ip地址
    private String remote_user;// 记录客户端用户名称,忽略属性"-"
    private String time_local;// 记录访问时间与时区
    private String request;// 记录请求的url与http协议
    private String status;// 记录请求状态;成功是200
    private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
    private String http_referer;// 用来记录从那个页面链接访问过来的
    private String http_user_agent;// 记录客户浏览器的相关信息

    private boolean valid = true;// 判断数据是否合法
    
    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("valid:" + this.valid);
        sb.append("\nremote_addr:" + this.remote_addr);
        sb.append("\nremote_user:" + this.remote_user);
        sb.append("\ntime_local:" + this.time_local);
        sb.append("\nrequest:" + this.request);
        sb.append("\nstatus:" + this.status);
        sb.append("\nbody_bytes_sent:" + this.body_bytes_sent);
        sb.append("\nhttp_referer:" + this.http_referer);
        sb.append("\nhttp_user_agent:" + this.http_user_agent);
        return sb.toString();
    }

    public String getRemote_addr() {
        return remote_addr;
    }

    public void setRemote_addr(String remote_addr) {
        this.remote_addr = remote_addr;
    }

    public String getRemote_user() {
        return remote_user;
    }

    public void setRemote_user(String remote_user) {
        this.remote_user = remote_user;
    }

    public String getTime_local() {
        return time_local;
    }

    public Date getTime_local_Date() throws ParseException {
        SimpleDateFormat df = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.US);
        return df.parse(this.time_local);
    }
    
    public String getTime_local_Date_hour() throws ParseException{
        SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHH");
        return df.format(this.getTime_local_Date());
    }

    public void setTime_local(String time_local) {
        this.time_local = time_local;
    }

    public String getRequest() {
        return request;
    }

    public void setRequest(String request) {
        this.request = request;
    }

    public String getStatus() {
        return status;
    }

    public void setStatus(String status) {
        this.status = status;
    }

    public String getBody_bytes_sent() {
        return body_bytes_sent;
    }

    public void setBody_bytes_sent(String body_bytes_sent) {
        this.body_bytes_sent = body_bytes_sent;
    }

    public String getHttp_referer() {
        return http_referer;
    }
    
    public String getHttp_referer_domain(){
        if(http_referer.length()<8){ 
            return http_referer;
        }
        
        String str=this.http_referer.replace("\"", "").replace("http://", "").replace("https://", "");
        return str.indexOf("/")>0?str.substring(0, str.indexOf("/")):str;
    }

    public void setHttp_referer(String http_referer) {
        this.http_referer = http_referer;
    }

    public String getHttp_user_agent() {
        return http_user_agent;
    }

    public void setHttp_user_agent(String http_user_agent) {
        this.http_user_agent = http_user_agent;
    }

    public boolean isValid() {
        return valid;
    }

    public void setValid(boolean valid) {
        this.valid = valid;
    }

    public static void main(String args[]) {
        String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /images/my.jpg HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");

        kpi.setRemote_addr(arr[0]);
        kpi.setRemote_user(arr[1]);
        kpi.setTime_local(arr[3].substring(1));
        kpi.setRequest(arr[6]);
        kpi.setStatus(arr[8]);
        kpi.setBody_bytes_sent(arr[9]);
        kpi.setHttp_referer(arr[10]);
        kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
        System.out.println(kpi);

        try {
            SimpleDateFormat df = new SimpleDateFormat("yyyy.MM.dd:HH:mm:ss", Locale.US);
            System.out.println(df.format(kpi.getTime_local_Date()));
            System.out.println(kpi.getTime_local_Date_hour());
            System.out.println(kpi.getHttp_referer_domain());
        } catch (ParseException e) {
            e.printStackTrace();
        }
    }

}

从日志文件中,取一行通过main函数写一个简单的解析测试。

控制台输出:


222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
valid:true
remote_addr:222.68.172.190
remote_user:-
time_local:18/Sep/2013:06:49:57
request:/images/my.jpg
status:200
body_bytes_sent:19939
http_referer:"http://www.angularjs.cn/A00n"
http_user_agent:"Mozilla/5.0 (Windows
2013.09.18:06:49:57
2013091806
www.angularjs.cn

我们看到日志行,被正确的解析成了kpi对象的属性。我们把解析过程,单独封装成一个方法。


    private static KPI parser(String line) {
        System.out.println(line);
        KPI kpi = new KPI();
        String[] arr = line.split(" ");
        if (arr.length > 11) {
            kpi.setRemote_addr(arr[0]);
            kpi.setRemote_user(arr[1]);
            kpi.setTime_local(arr[3].substring(1));
            kpi.setRequest(arr[6]);
            kpi.setStatus(arr[8]);
            kpi.setBody_bytes_sent(arr[9]);
            kpi.setHttp_referer(arr[10]);
            
            if (arr.length > 12) {
                kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
            } else {
                kpi.setHttp_user_agent(arr[11]);
            }

            if (Integer.parseInt(kpi.getStatus()) >= 400) {// 大于400,HTTP错误
                kpi.setValid(false);
            }
        } else {
            kpi.setValid(false);
        }
        return kpi;
    }

对map方法,reduce方法,启动方法,我们单独写一个类来实现

下面将分别介绍MapReduce的实现类:

  • PV:org.conan.myhadoop.mr.kpi.KPIPV.java
  • IP: org.conan.myhadoop.mr.kpi.KPIIP.java
  • Time: org.conan.myhadoop.mr.kpi.KPITime.java
  • Browser: org.conan.myhadoop.mr.kpi.KPIBrowser.java

1). PV:org.conan.myhadoop.mr.kpi.KPIPV.java


package org.conan.myhadoop.mr.kpi;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class KPIPV { 

    public static class KPIPVMapper extends MapReduceBase implements Mapper {
        private IntWritable one = new IntWritable(1);
        private Text word = new Text();

        @Override
        public void map(Object key, Text value, OutputCollector output, Reporter reporter) throws IOException {
            KPI kpi = KPI.filterPVs(value.toString());
            if (kpi.isValid()) {
                word.set(kpi.getRequest());
                output.collect(word, one);
            }
        }
    }

    public static class KPIPVReducer extends MapReduceBase implements Reducer {
        private IntWritable result = new IntWritable();

        @Override
        public void reduce(Text key, Iterator values, OutputCollector output, Reporter reporter) throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            result.set(sum);
            output.collect(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        String input = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/";
        String output = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv";

        JobConf conf = new JobConf(KPIPV.class);
        conf.setJobName("KPIPV");
        conf.addResource("classpath:/hadoop/core-site.xml");
        conf.addResource("classpath:/hadoop/hdfs-site.xml");
        conf.addResource("classpath:/hadoop/mapred-site.xml");

        conf.setMapOutputKeyClass(Text.class);
        conf.setMapOutputValueClass(IntWritable.class);

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(KPIPVMapper.class);
        conf.setCombinerClass(KPIPVReducer.class);
        conf.setReducerClass(KPIPVReducer.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(input));
        FileOutputFormat.setOutputPath(conf, new Path(output));

        JobClient.runJob(conf);
        System.exit(0);
    }
}

在程序中会调用KPI类的方法

KPI kpi = KPI.filterPVs(value.toString());

通过filterPVs方法,我们可以实现对PV,更多的控制。

在KPK.java中,增加filterPVs方法


    /**
     * 按page的pv分类
     */
    public static KPI filterPVs(String line) {
        KPI kpi = parser(line);
        Set pages = new HashSet();
        pages.add("/about");
        pages.add("/black-ip-list/");
        pages.add("/cassandra-clustor/");
        pages.add("/finance-rhive-repurchase/");
        pages.add("/hadoop-family-roadmap/");
        pages.add("/hadoop-hive-intro/");
        pages.add("/hadoop-zookeeper-intro/");
        pages.add("/hadoop-mahout-roadmap/");

        if (!pages.contains(kpi.getRequest())) {
            kpi.setValid(false);
        }
        return kpi;
    }

在filterPVs方法,我们定义了一个pages的过滤,就是只对这个页面进行PV统计。

我们运行一下KPIPV.java


2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-10-9 11:53:28 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000000_0' done.
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task initialize
信息:  Using ResourceCalculatorPlugin : null
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: 
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Merging 1 sorted segments
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Down to the last merge-pass, with 1 segments left of total size: 213 bytes
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: 
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: 
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task commit
信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
2013-10-9 11:53:30 org.apache.hadoop.mapred.FileOutputCommitter commitTask
信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv
2013-10-9 11:53:31 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息:  map 100% reduce 0%
2013-10-9 11:53:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: reduce > reduce
2013-10-9 11:53:33 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_r_000000_0' done.
2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息:  map 100% reduce 100%
2013-10-9 11:53:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Job complete: job_local_0001
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息: Counters: 20
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   File Input Format Counters 
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Bytes Read=3025757
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   File Output Format Counters 
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Bytes Written=183
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   FileSystemCounters
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     FILE_BYTES_READ=545
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     HDFS_BYTES_READ=6051514
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     FILE_BYTES_WRITTEN=83472
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     HDFS_BYTES_WRITTEN=183
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:   Map-Reduce Framework
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output materialized bytes=217
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map input records=14619
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce shuffle bytes=0
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Spilled Records=16
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output bytes=2004
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Total committed heap usage (bytes)=376569856
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map input bytes=3025757
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     SPLIT_RAW_BYTES=110
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Combine input records=76
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce input records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce input groups=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Combine output records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Reduce output records=8
2013-10-9 11:53:34 org.apache.hadoop.mapred.Counters log
信息:     Map output records=76

用hadoop命令查看HDFS文件


~ hadoop fs -cat /user/hdfs/log_kpi/pv/part-00000

/about  5
/black-ip-list/ 2
/cassandra-clustor/     3
/finance-rhive-repurchase/      13
/hadoop-family-roadmap/ 13
/hadoop-hive-intro/     14
/hadoop-mahout-roadmap/ 20
/hadoop-zookeeper-intro/        6

这样我们就得到了,刚刚日志文件中的,指定页面的PV值。

指定页面,就像网站的站点地图一样,如果没有指定所有访问链接都会被找出来,通过“站点地图”的指定,我们可以更容易地找到,我们所需要的信息。

后面,其他的统计指标的提取思路,和PV的实现过程都是类似的,大家可以直接下载源代码,运行看到结果!!

######################################################
看文字不过瘾,作者视频讲解,请访问网站:http://onbook.me/video
######################################################

转载请注明出处:
http://blog.fens.me/hadoop-mapreduce-log-kpi/

打赏作者

Mahout学习路线图

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mahout-roadmap/

Hadoop-mahout-roadmap

前言

Mahout是Hadoop家族中与众不同的一个成员,是基于一个Hadoop的机器学习和数据挖掘的分布式计算框架。Mahout是一个跨学科产品,同时也是我认为Hadoop家族中,最有竞争力,最难掌握,最值得学习的一个项目之一。

Mahout为数据分析人员,解决了大数据的门槛;为算法工程师,提供基础的算法库;为Hadoop开发人员,提供了数据建模的标准;为运维人员,打通了和Hadoop连接。

Mahout就是训象人,在Hadoop上创造新的智慧!

目录

  1. Mahout介绍
  2. Mahout学习路线图
  3. 我的学习经历
  4. Mahout的使用案例

1. Mahout介绍

Mahout 是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。

根据”Mahout In Action”书中的介绍,Mahout实现3大类算法, 推荐(Recommendation),聚类(Clustering),分类(Classification)。

下文介绍的学习路线图,将以”Mahout In Action”书中思路展张。

2. Mahout学习路线图

HadoopMahoutRoadmap

Mahout知识点,我已经列在图中,希望帮助其他人更好的了解Mahout。

接下来,是我的学习经历,谁都没有捷径。把心踏实下来,就不那么难了。

3. 我的学习经历

之前,大概花了半年的时间,专门研究过Mahout,当时Mahout的资料非常少,中文资料更是仅仅几篇。直到发现了“Mahout In Action”如获至宝,开始反复地读。先不着急上手去做什么,一遍一遍地读。直到读完3遍,心理才有了一点把握。

从“推荐”算法开始,UserCF, ItemCF。 记得第一次在公司给小组讲的时候,还设计了一份问卷,我列出了10个网站,(其中6个IT大站,2个个人blog,2个社交类社区),分别让大家去投票,0-5分,0为不知道,1-5为对网站喜爱程序。

问卷结果格式:

user1, website1, 5
user1, website2, 2
user1, website3, 4
user2, website3, 2
user3, website3, 5
user4, website3, 0
…..

通过这个问卷来模拟尝试Mahout的推荐模型!计算的结果对大家来说,都是比较奇怪。为什么会有这样的推荐呢。 然后,深入Mahout源代码,看算法的实现,知道了相似度矩阵,距离算法,推荐算法,模型验证等,不同业务要求,不同的算法调用,对结果都是有影响的。把书中所有的的概念,关键词都整理过(可惜当时没写博客)。整整花了3个月,每天12个小时的强度,把推荐部分完整地学下来了。

然后,应用到实际业务中。我的任务是做“职位推荐”,我只有用户浏览职位,收藏职位,申请职位的行为数据。

第一次尝试,直接套用推荐模型,但结果非常之差。
出现问题的原因是有2点:

  • 1. 职位是有时效性的,每个职位可能3个月就会过期:推荐结果包含了很多的过期职位。
  • 2. 大量的用户行为都是历史的,甚至是2-3年前的:推荐结果不符合用户的预期。我估计每半年用户的职位都可能有上升,所以历史行为是不能直接用于当前用户的计算。

修改方案:
1. 对用户行为数据集进行过滤,只计算最近半年内的用户行为。
2. 对结果集进行过滤,排除过期的职位。
3. 分别用不同的算法模型计算(我记得Tanimoto的Item Base结果最好)

对于推荐结果有了大幅度的提升。故事到此就结束了!虽然我还做了更多的事情,不过这个产品由于公司结构性调整,最终没有上线。(程序员的悲哀!)

聚类模型,我把这个算法 应用在网站用户的活跃度分析。假设一个网站,注册用户1000W,每天登陆的1W。我们想了解一下,未登陆的999W用户有什么特点!!用到Mahout的k-means和Canopy做聚类,假设1000W的用户可能可以划分为5个大的群体。最后我们得到了一个结果,分享到了团队。故事又到此结束了。(实现就是这么悲哀!)

分类模型,我尝试着用Native Bayes对我的个人邮件进行垃圾分类。按机器学习的操作流程,历史数据健分词后,训练分类器,每天时时的数据通过分类器进行判断。整个自动化过程都已经完成。故事又结束了!(接受现实吧。)

其实还有一些,我争取都整理出来。

Mahout是有一定的学习门槛,而且需要跨学科的知识。只要坚持学习,没有跨不过的鸿沟!乐观努力!

4. Mahout的使用案例

已经整理成文章的案例

正在准备更多的案例…..

相关文章:
Hadoop家族产品学习路线图

转载请注明出处:
http://blog.fens.me/hadoop-mahout-roadmap/

打赏作者

[转] 十道海量数据处理面试题与十个方法大总结

原文: http://blog.csdn.net/v_JULY_v/article/details/6279498

 

第一部分、十道海量数据处理面试题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

此题,在我之前的一篇文章算法里头有所提到,当时给出的方案是:IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

再详细介绍下此方案:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法,还是在这篇文章里头有所阐述。 文中,给出的最终算法是:第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成排序;然后,第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

还是典型的TOP K算法,解决方案如下: 方案1: 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2: 一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3: 与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloom filter日后会在本BLOG内详细阐述。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

与上第6题类似,我的第一反应时快速排序+二分查找。以下是其它更好的方法: 方案1:oo,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

dizengrong: 方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;这里我们把40亿个数中的每一个用32位的二进制来表示假设这40亿个数开始放在一个文件中。

然后将这40亿个数分成两类: 1.最高位为0 2.最高位为1 并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);与要查找的数的最高位比较并接着进入相应的文件再查找

再然后把这个文件为又分成两类: 1.次最高位为0 2.次最高位为1

并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了); 与要查找的数的次最高位比较并接着进入相应的文件再查找。 ……. 以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。

附:这里,再简单介绍下,位图方法: 使用位图法判断整形数组是否存在重复 判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。

8、怎么在海量数据中找出重复次数最多的一个?

 方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

9、上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第2题提到的堆机制完成。

10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。

附、100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

第二部分、十个海量数据处理方法大总结

ok,看了上面这么多的面试题,是否有点头晕。是的,需要一个总结。接下来,本文将简单总结下一些处理海量数据问题的常见方法。

下面的方法全部来自http://hi.baidu.com/yanxionglu/blog/博客,对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎讨论。

一、Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

基本原理及要点:

对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

二、Hashing

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

基本原理及要点:

hash函数选择,针对字符串,整数,排列,具体相应的hash方法。

碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

扩展:

d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:

1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

三、bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

四、堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:

1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

五、双层桶划分—-其实本质上就是【分而治之】的思想,重在分的技巧上!

适用范围:第k大,中位数,不重复或重复的数字

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:

问题实例:

1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

六、数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。

七、倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本: T0 = “it is what it is” T1 = “what is it” T2 = “it is a banana”

我们就能得到下面的反向文件索引:

“a”: {2} “banana”: {2} “is”: {0, 1, 2} “it”: {0, 1, 2} “what”: {0, 1}

检索的条件”what”,”is”和”it”将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

八、外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

扩展:

问题实例:

1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

九、trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:

1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

十、分布式处理 mapreduce

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:

问题实例:

1).The canonical example application of MapReduce is a process to count the appearances ofeach different word in a set of documents:

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

经典问题分析

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

用R解析Mahout用户推荐协同过滤算法(UserCF)

RHadoop实践系列文章,包含了R语言与Hadoop结合进行海量数据分析。Hadoop主要用来存储海量数据,R语言完成MapReduce 算法,用来替代Java的MapReduce实现。有了RHadoop可以让广大的R语言爱好者,有更强大的工具处理大数据1G, 10G, 100G, TB, PB。 由于大数据所带来的单机性能问题,可能会一去不复返了。

RHadoop实践是一套系列文章,主要包括”Hadoop环境搭建”,”RHadoop安装与使用”,R实现MapReduce的协同过滤算法”,”HBase和rhbase的安装与使用”。对于单独的R语言爱好者,Java爱好者,或者Hadoop爱好者来说,同时具备三种语言知识并不容 易。此文虽为入门文章,但R,Java,Hadoop基础知识还是需要大家提前掌握。

关于作者

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-mahout-usercf/

r-mahout

前言
用R全面解析Mahout的基于用户推荐协同过滤算法(UserCF),改进的采用欧氏距离,并用R语言实现,与Mahout的结果进行对比。

Mahout是Hahoop家族用于机器学习的一个框架,包括三个主要部分,推荐,聚类,分类!
我在这里做的是推荐部分。推荐系统在现在的互联网应用中很常见,比如,亚马逊会推荐你买书,豆瓣会给你一个书评,影评。

由于时间仓促,欢迎大家一起讨论。

目录

  1. Mahout的模型介绍
  2. R语言模型实现
  3. 算法实现的原理–矩阵变换
  4. 算法总结
  5. 参考资料

1. Mahout的模型介绍

mahout-recommendation-process

Mahout版本

 
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.5</version>
</dependency>

Mahout程序写法


public class UserBaseCFMain {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws IOException, TasteException {
        String file = "metadata/data/testCF.csv";
        DataModel model = new FileDataModel(new File(file));
        UserSimilarity user = new EuclideanDistanceSimilarity(model);
        NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
        Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
        LongPrimitiveIterator iter = model.getUserIDs();

        while (iter.hasNext()) {
            long uid = iter.nextLong();
            List list = r.recommend(uid, RECOMMENDER_NUM);
            System.out.printf("uid:%s", uid);
            for (RecommendedItem ritem : list) {
                System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
            }
            System.out.println();
        }
    }
} 

推荐结果:


uid:1(104,4.250000)(106,4.000000)
uid:2(105,3.956999)
uid:3(103,3.185407)(102,2.802432)
uid:4(102,3.000000)
uid:5 

2. R语言模型实现

  • 1). 建立数据模型
  • 2). 欧氏距离相似度算法
  • 3). 最紧邻算法
  • 4). 推荐算法
  • 5). 运行程序

由于时间仓促,R的代码中,有不少for循环影响性能,请暂时跳过!

1). 建立数据模型


FileDataModel<-function(file){
data<-read.csv(file,header=FALSE)
names(data)<-c("uid","iid","pref")

user <- unique(data$uid)
item <- unique(sort(data$iid))
uidx <- match(data$uid, user)
iidx <- match(data$iid, item)
M <- matrix(0, length(user), length(item))
i <- cbind(uidx, iidx, pref=data$pref)
for(n in 1:nrow(i)){
M[i[n,][1],i[n,][2]]<-i[n,][3]
}
dimnames(M)[[2]]<-item
M
}

2). 欧氏距离相似度算法


EuclideanDistanceSimilarity<-function(M){
row<-nrow(M)
s<-matrix(0, row, row)
for(z1 in 1:row){
for(z2 in 1:row){
if(z1<z2){< span="">
num<-intersect(which(M[z1,]!=0),which(M[z2,]!=0)) #可计算的列

sum<-0
for(z3 in num){
sum<-sum+(M[z1,][z3]-M[z2,][z3])^2
}

s[z2,z1]<-length(num)/(1+sqrt(sum))

if(s[z2,z1]>1) s[z2,z1]<-1 #标准化
if(s[z2,z1]< -1) s[z2,z1]<- -1 #标准化

#print(paste(z1,z2));print(num);print(sum)
}
}
}
#补全三角矩阵
ts<-t(s)
w<-which(upper.tri(ts))
s[w]<-ts[w]
s
}

3). 最紧邻算法

NearestNUserNeighborhood<-function(S,n){ row<-nrow(S) neighbor<-matrix(0, row, n) for(z1 in 1:row){ for(z2 in 1:n){ m<-which.max(S[,z1]) #       print(paste(z1,z2,m,'\n')) neighbor[z1,][z2]<-m S[,z1][m]=0 } } neighbor }

4). 推荐算法


UserBasedRecommender<-function(uid,n,M,S,N){
row<-ncol(N)
col<-ncol(M)
r<-matrix(0, row, col)
N1<-N[uid,]
for(z1 in 1:length(N1)){
num<-intersect(which(M[uid,]==0),which(M[N1[z1],]!=0)) #可计算的列
#     print(num)

for(z2 in num){
#       print(paste("for:",z1,N1[z1],z2,M[N1[z1],z2],S[uid,N1[z1]]))
r[z1,z2]=M[N1[z1],z2]*S[uid,N1[z1]]
}
}

sum<-colSums(r)
s2<-matrix(0, 2, col)
for(z1 in 1:length(N1)){
num<-intersect(which(colSums(r)!=0),which(M[N1[z1],]!=0))
for(z2 in num){
s2[1,][z2]<-s2[1,][z2]+S[uid,N1[z1]]
s2[2,][z2]<-s2[2,][z2]+1
}
}

s2[,which(s2[2,]==1)]=10000
s2<-s2[-2,]

r2<-matrix(0, n, 2)
rr<-sum/s2
item <-dimnames(M)[[2]]
for(z1 in 1:n){
w<-which.max(rr)
if(rr[w]>0.5){
r2[z1,1]<-item[which.max(rr)]
r2[z1,2]<-as.double(rr[w])
rr[w]=0
}
}
r2
}

5). 运行程序


FILE<-"testCF.csv"
NEIGHBORHOOD_NUM<-2
RECOMMENDER_NUM<-3

M<-FileDataModel(FILE)
S<-EuclideanDistanceSimilarity(M)
N<-NearestNUserNeighborhood(S,NEIGHBORHOOD_NUM)

R1<-UserBasedRecommender(1,RECOMMENDER_NUM,M,S,N);R1
##      [,1]  [,2]  
## [1,] "104" "4.25"
## [2,] "106" "4"   
## [3,] "0"   "0" 

R2<-UserBasedRecommender(2,RECOMMENDER_NUM,M,S,N);R2
##      [,1]  [,2]
## [1,] "105" "3.95699903407931"
## [2,] "0"   "0"
## [3,] "0"   "0"

R3<-UserBasedRecommender(3,RECOMMENDER_NUM,M,S,N);R3
##      [,1]  [,2]
## [1,] "103" "3.18540697329411"
## [2,] "102" "2.80243217111765"
## [3,] "0"   "0"

R4<-UserBasedRecommender(4,RECOMMENDER_NUM,M,S,N);R4
##      [,1]  [,2]
## [1,] "102" "3" 
## [2,] "0"   "0" 
## [3,] "0"   "0"

R5<-UserBasedRecommender(5,RECOMMENDER_NUM,M,S,N);R5
##      [,1] [,2]
## [1,]    0    0
## [2,]    0    0
## [3,]    0    0

3. 算法实现的原理–矩阵变换

所谓协同过滤算法,其实就是矩阵变换的结果!!请大家下面留意矩阵操作!
1). 原始数据

 1,101,5.0
  1,102,3.0
  1,103,2.5
  2,101,2.0
  2,102,2.5
  2,103,5.0
  2,104,2.0
  3,101,2.5
  3,104,4.0
  3,105,4.5
  3,107,5.0
  4,101,5.0
  4,103,3.0
  4,104,4.5
  4,106,4.0
  5,101,4.0
  5,102,3.0
  5,103,2.0
  5,104,4.0
  5,105,3.5
  5,106,4.0 

2). 矩阵转换

 101 102 103 104 105 106 107
[1,] 5.0 3.0 2.5 0.0 0.0   0   0
[2,] 2.0 2.5 5.0 2.0 0.0   0   0
[3,] 2.5 0.0 0.0 4.0 4.5   0   5
[4,] 5.0 0.0 3.0 4.5 0.0   4   0
[5,] 4.0 3.0 2.0 4.0 3.5   4   0 

3). 欧氏相似矩阵转换

 [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.0000000 0.6076560 0.2857143 1.0000000 1.0000000
[2,] 0.6076560 0.0000000 0.6532633 0.5568464 0.7761999
[3,] 0.2857143 0.6532633 0.0000000 0.5634581 1.0000000
[4,] 1.0000000 0.5568464 0.5634581 0.0000000 1.0000000
[5,] 1.0000000 0.7761999 1.0000000 1.0000000 0.0000000 

4). 最近邻矩阵

 top1 top2
[1,]    4    5
[2,]    5    3
[3,]    5    2
[4,]    1    5
[5,]    1    3 

5). 以R1为例的推荐矩阵

 101  102  103  104  105  106  107
   4    0    0    0  4.5  0.0    4    0
   5    0    0    0  4.0  3.5    4    0 

6). 以R1为例的推荐结果

 推荐物品  物品得分
[1,] "104"    "4.25"
[2,] "106"    "4" 

4. 算法总结

我这里只是用R语言现实了Mahout的基于“用户的”,“欧氏距离”,“最近邻”的协同过滤算法。实现过程中发现,Mahout做各种算法时,都有自己的优化。

比如,算欧氏距离时,并不是标准的

similar = 1/(1+sqrt( (a-b)2 + (a-c)2 ))

而是改进的算法

similar = n/(1+sqrt( (a-b)2 + (a-c)2 )) 
  1. n为b,c的个数
  2. similar>1 => similar=1
  3. similar<-1 => similar=-1

从而更能优化结果。

5. 参考资料:

  1. Mahout In Action
  2. Mahout Source Code
  3. R help

转载请注明出处:
http://blog.fens.me/r-mahout-usercf/

打赏作者