• 粉丝日志首页

R语言为量化而生

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,Nodejs
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-finance/

r-finance

前言

做数据分析的朋友,一定听说过R语言。R语言是一门统计语言,在数据分析领域优势是非常明显的。

本文以 “R语言,为量化而生”为题,说明R语言真的很适合做金融做量化策略。金融本身是玩数据行业,R的最大的优势就是数据分析,所以用R来做量化投资的策略,真是很配,不仅顺手而且方便,用了你就会知识。

本文将由3个方面来介绍,R语言做量化是多么的适合。

目录

  1. 为什么是R语言?
  2. R语言的数据处理和时间序列
  3. R语言和金融模型

1. 为什么是R语言?

那么为什么是R语言,而不是其他的语言? 先简单介绍一下,我们的个人经历。

我是一个程序员,从2004年开始接触Java写了10多年的Java程序,期间还尝试过多种编程语言,VB、PHP、Python、SAS、R、Nodejs,最后把自己锁定在R,Nodejs和Java。谈不上对每一种语言都有很深的理解,但是每种语言的特点还是有点心得。

之所以选择R,Nodejs和Java这3种语言,有一部分情怀,更多的是理性。从技术发展来看,编程开发变得越来越简单,10年前用JavaEE做一个简单的web项目至少要2人月,现在用Nodejs新人边学边搞只需10人天。而且随着业务的多样化,单一的技术已经不足以支撑业务的发展,业务在从传统的软件开发向互联网和数据产品的方向在进化。根据不同语言的特点,每种都将在开发中占据一席之地,而很难在出现一种语言统一天下的情况。

R语言将在数据分析领域发挥着重要的作用。R语言的3个特性,数学计算、数据建模和数据可视化。R语言封装了多种基础学科的计算函数,我们在R语言编程的过程中只需要调用这些计算函数,就可以构建出面向不同领域、不同业务的、复杂的数学模型。

另外,R的知识体系结构是复杂的,要想学好R,就必须把多学科的知识综合运用,而最大的难点不在于R语言本身,在于使用者的知识基础和综合运用的能力。

r-basic

图中我将R语言知识体系结构分为3个部分:IT技术 + 业务知识 + 基础学科。

  • IT技术:是数据大发展时代必备的技术之一,R语言就是我们应该要掌握的一门技术。
  • 业务知识:是市场经验和法则,不管你在什么公司,你都了解业务是什么,产品是什么,用户是谁,公司的价值在哪里!
  • 基础学科:是我们在学校里学到的理论知识,虽然当初学的时候并不理解,工作中如果你还能掌握并实际运用,那么这将是你最有价值的竞争力。

关于R的知识体系,可以参考文章,R语言知识体系概览

对于金融量化投资来说,刚好是一个交叉学科,你需要懂IT技术,熟悉金融市场的规则,有数学建模的能力。R语言,正好可以帮我们来解决这样的问题,所以“R语言,为量化而生”!

对于做过数据分析的人来说,大家都了解什么是最费时间的!!无疑就是数据处理的部分。

2. R语言的数据处理和时间序列

第二部分,我们来介绍一下R语言的数据类型和数据处理的一些方法。当然,本文并没有介绍如何入门R语言,新手入门请参考文章R的极客理想系列文章

2.1 基本数据类型

在R语言中,数据类型包括向量类型,字符串类型,数字类型,布尔类型,矩阵类型,数据框类型,list类型等,通常我们在使用R语言里做数据处理的时候,大部分都会以数据框(data.frame)类型为一个主要的数据内存类型来使用。

数据框(data.frame)类型是R语言内置的一种数据类型,我们可以简单地把它理解为,与关系型数据库中表的结构是类似的,是一种二维的数据结构。


# 新建一个数据框
> data.frame(A=1:6,B=LETTERS[1:6])
  A B
1 1 A
2 2 B
3 3 C
4 4 D
5 5 E
6 6 F

正是由于R语言内置了这样的数据类型,使我们从数据库读取数据或导入CSV格式的数据时,与R语言有了一个很好的映射关系,直接加载到R语言的内存中变成标准化数据格式。

然后,就可以基于标准化的数据格式,用R语言的功能函数来处理数据了。比如,对于做数据库开发的人员来说,他可以使用sqldf包,在R语言中通过SQL语句对数据进行数据变换。同时,也可以按着数据框(data.frame)的标准方法进行数据处理,通过约定的向量索引下标的方式来按行按列来读取数据,或使用功能函数处理数据。


# sqldf包的使用
> library(sqldf)
> sqldf('select * from iris limit 6')
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

# 向量索引
> iris[1:6,]
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

# head函数使用
> head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

我们经常还会对数据进行转型处理,把数据框(data.frame)类型和其他数据类型的进行转化。我们有时会使用矩阵计算,R语言中默认供了矩阵(matrix)数据类型,可以很方便地把数据框转类型成矩阵类型,有时也需要把数据框的某一行或某一列转型为一个向量类型数据,或者把数据框变成一个list类型。通过数据的格式变换,用标准化的数据结构来满足数据分析的要求。

虽然R语言是统计语言,从性能上来说比C++/Java等语言慢不少。但对于数据分析的业务场景,用R语言来做数据处理的时候,你不用考虑程序如何架构,指针怎么定义,内存是否会泄露,只要关注你的数据和算法就行了。唯一需要注意的一点,不要直接用for循环的方式处理数据,尽量使用向量计算或矩阵计算的计算方法。当必须用循环的时候,你就需要用apply家族函数,代替for循环来做数据处理。关于apply家族函数的用法,请参考文章掌握R语言中的apply函数族

如果你的数据量比较大,1GB,10GB,甚至有100GB,对于这种规模比较大的数据集,apply的计算方式就不太能满足计算性能的要求了。你依然可以用data.table包, bigmemory包, ff包等,或者并行计算的包加速R语言在单机上的计算的性能。data.table的使用方法,请参考文章超高性能数据处理包data.table

那么再大规模的数据,超过1TB这个量级,不只是R语言,每种语言都会遇到计算性能的瓶颈。这个时候,我们需要把数据放到分布式系统中,如Hadoop或其他大数据的引擎中进行存储和计算。R语言与各种的大数据平台的通信接口都是通的,比如RHadoop,rhive, rhbase, rmongodb, rCassandra, SparkR, sparklyr等。如果你想了解hadoop的知识,请参考文章Hadoop家族系列文章RHadoop实践系列文章, R利剑NoSQL系列文章 之 Hive

2.2 时间序列类型

除了R语言的内置基础数据类型,对于金融的数据处理,一般我会把它变成标准的时间序列类型的数据,R语言中基本的时间序列的类型为 zoo 和 xts类型,当然还有一些其他包提供的数据类型。关于zoo和xts的详细介绍,请参考文章 R语言时间序列基础库zoo可扩展的时间序列xts

通过类型变换可以很方便地把的data.frame或者matrix等基础类型数据,变成xts时间序列类型的数据。时间序列类型的好处是它默认会以时间作为索引,对于量化策略来说,每条数据记录他都会有数据产生的时间,那这个时间就正好可以作为索引列的时间。


# 数据框
> df<-data.frame(A=1:6,B=rnorm(6))

# xts时间序列类型
> xdf<-xts(df,order.by=as.Date('2016-01-01')+1:6);xdf
           A           B
2016-01-02 1 -1.24013232
2016-01-03 2 -0.21014651
2016-01-04 3 -1.63251615
2016-01-05 4 -0.67279885
2016-01-06 5  0.01487863
2016-01-07 6  0.92012628

# 类型检查
> class(xdf)
[1] "xts" "zoo"

那么以时间作为数据的索引列的好处是,可以很方便地把数据以时间维度进行对齐。比如,你设计了一个股票交易策略和一个期货交易策略,由于股票是T+1交易,今天买了明天才能卖;而期货是T+0交易,今天买了马上就可以卖出。针对不同的市场规则,在设计交易策略时,可能就会选择不同的交易周期,那么这时两个策略的交易周期就会不一样,那么时间维度可能也不是对齐的。如果这两个策略是对冲的,那么我们就需要把它们以时间维度进行对齐,才能进行实现对策略模型对冲的准确计算。

把不同时间的维度的数据转化成同一个时间维度,相当于做时间的标准化。通过标准化的操作,让数据变成同一时间维度,数据之间才能够进行计算。

举个简单的例子,我们做股票交易,在实盘交易过程中,你可能最关心的是每秒最新的价格数据,每一秒都会产生一条数据,这是属于日内交易策略。另外,我们再做一个周期稍微长一点的策略,以日线为基础的,那么这里一条记录就是一天收盘价。对比日内策略,1秒钟一条数据和1天一条数据,它们不同维度的数据,是不能直接进行计算。

我们要处理这种不同周期维度数据的时候,就需要把数据转成同一个维度的。比如,我们对日线和周线的数据进行合并的时候,可以是把周线数据拆成日线数据,就是把一周分成五天。反过来,也可以把日线数据合并为周线数据,把5天的数据合并成一周。

所以这个时候就需要一个统一的数据格式进行标准化的数据定义,zoo和xts就是我们作为时间序列基础数据类型。这两个包是由第三方开发的,提供了很丰富的时间序列处理函数,我们可以直接使用这些函数来操作金融数据。很多其他的第三方金融算法分析包,也都是以这两个包作为基础开发。

3. R语言和金融模型

当我们掌握了R语言处理数据的方法,了解了如何使用R语言的基础数据类型和时间序列数据类型,下面我们就可以构建金融的策略模型。

金融建模跟其他行业的数据建模是类似的,只是由于行业不一样,金融行业有很多背景知识和金融市场规则需要我们了解。金融本身就是一个玩数据的行业,你可以通过获得交易数据,财务数据,上市公司的各种事件数据,基本面数据,宏观数据,舆情数据,互联网数据等,来构建你自己的交易策略。

我们需要把这些数据进行组合整理,结合你自己对业务的理解,使用R语言从数据中发现规律,并构建交易模型。用程序对历史数据进行回测,来验证规律的可靠性,是否会长期有效,并控制风险,最后把验证过的规律变成算法模型,这个就是金融策略建模的过程。

从金融交易分析的角度,可以从3个维度进行分析 基本面分析,技术面分析和消息面分析。

  • 基本面:指对宏观经济、行业和公司基本情况的分析,包括公司经营理念策略、公司报表等的分析。长线投资一般用基本面分析,通过基本面可以判断是否值去交易。
  • 技术面:指通过技术指标变化,判断股票走势形态,进行K线组合等,通过技术面可以判断如何进行交易。
  • 消息面:指上市公司发布的利好和利空的消息,通过消息面可以判断市场的情绪。

对于量化模型,大部分都是基于技术指标的模型,通过技术指标建模,跟踪市场的表现。在不完全了解金融业务和金融市场的情况下,通过几个技术指标来监控市场的走势,发现市场的机会也是有可能的。

量化交易和主观交易并不是对立的,量化交易是对主观交易的补充,当我们以数据作为决策基础的时候,其实可以尽量减少拍脑袋过程,创建数据模型也可以给我们心里建立良好的信心。如果交易没有使用量化的方法,那就跟我们平时做事一样,你可能想到什么就是什么。没有数据基础,那完全就是感觉,这样子交易就是很容易赔钱。

对于中国很多的散户,听到一个消息就跟着风的买卖股票,或者凭自己感觉大盘该涨了就跟进去,这些操作其实都是很不理性的。如果你通过量化的方法,即使再简单,就靠几条均线来进行判断,这样也是能给自己一个数据的基础,建立信心,而不是完全拍脑袋的事儿。

量化交易模型主要是以技术指标为主,常用的技术指标有不少,虽然简单但还是很有用的。对于很多实盘上运行的量化策略,大都会基于这些基础的指标,但并不是把每个指标单独使用。而是把多个指标通过变换组合使用,比如说MACD是均线模型,大部分的趋势策略都以MACD做为基础指标,通过变换再生成新的衍生指标。

常用的技术指标还包括KDJ、Boll、RSI、CCI等,当你直接使用这些指标的时候,可能效果并不是太好。因为市场上普遍接受了这些技术指标,已经被大量使用。单纯地用一个指标,你掌握的信息并不比别人多,所以你可能抓不到市场上赚钱的机会。

我们需要把多种技术指标或者多个维度的指标进行结合,通过组合优化的方式来降低策略的不确定风险,同时提高收益率。如果你找到了一个只有你自己知道市场规律,你的策略产生的信号完全是跟别人有区别的,你抓住了别人看不到的机会,这个才是你的赚钱机会。你领先的越多,越少人知道这个规则,那你可能赚钱的机会就越多。

建立量化模型,其实和我们平时做数据分析的思考试是一样的。要把这件事做好,我们需要把IT技术,业务知识和基础学科知识做进一步的结合,当你发现这个结合是属于你自己特有一个知识体系,你才能更好的发挥你的才能。

我们为什么要用R来做这件事情?

首先,R语言本身提供了很多数学、统计的基础包,让数学计算变得非常容易。R语言提供了常用的数据结构,向量、数据框、矩阵等,把数据变成标准化的数据,你的关注点只在数据上就可以了。另外,R语言是免费开源的,很多的第三方开发者提供了丰富的数据挖掘包,让你可以方便的使用各种算法模型,短短几行代码,就可以搞定一个复杂的事情。

R语言,在金融领域提供了很多交易框架或者计算模型,如果你了解了金融的理论知识以后,同时有一定的金融市场经验,你可以很方便的利用这些别人提供的这些技术框架,来构建自己的交易模型。CRAN上发布的金融项目,你可以去 R的官方网站 (https://cran.r-project.org/),找到Task Views 菜单里的 Finance标签。

task

通过调用第三方的程序包,自己的代码量就变的非常少。我们做一个R语言的策略,如果是很复杂的,你可能要写100-200行,但是如果你要实现同样复杂的策略,放到C++/Java去实现,这个策略就是没有1000-2000行是不可能实现的。在CRAN上面,简单数一下Finance标签下面列出的金融包就有141个,我相信没有哪种语言会比R语言对金融行业支持的更多了。

task2

虽然说R语言在性能上有些问题,但是我们会有多少了交易策略是基于一种高频的模型,对性能要求极高的呢?其实很少。就算是高频交易策略,几秒钟交易一次,R语言都可能满足要求。

海量金融数据我们怎么处理呢?

我们可以把基于海量数据的计算变成离线模型,金融行业每天都会产生大量的数据,像每日产生的交易数据,中国市场每天可能都是以GB的量来增长,跟互联网比起来不是很快,但对于你程序加载10年的数据,他要GB或TB的一个量级。

R语言本身真的很难处理这种量级的数据,但是这种量级数据对于其他语言来说同样是很难处理的。我们并不需要把这种体量的数据,都加载到内存中,进行实时数据计算。变成离线的计算模型,仅用于建模回测。把海量数据能变成离线的方式,放到hadoop或spark计算,用海量数据进行模型的训练。

我们用到的实时数据,一般就是一天或几天的数据,会不很大,每天从开盘到收盘可能也就1-2GB,对于这个大小,我们完全有能力放到内存中,进行各种各样的计算。

做量化交易难点还是在于如何发现市场机会,R语言可以很好的满足数据计算,建模,分析等的所有技术的部分。利用你的擅长,找到市场的机会,然后去实盘交易赚到钱,我们就完成了整个的交易过程。

本文并没有介绍,如何用R语言真正的去实现一个交易策略,你可以通过下面的列表找到对应的文章。

2015年我在创业,希望能推动R语言在金融量化领域的发展,但是由于种种原因项目没有持续发展。接下来,我还会以个人的方式继续努力,继续推动R在金融领域的发展。R对我们的影响和改变是非常大的,我认识R是非常好的一门语言,我会把推动R的发展,当成一项事业来做。希望也能和各位业界朋友,一起努力,把这份事业做下去。

转载请注明出处:
http://blog.fens.me/r-finance/

打赏作者

超高性能数据处理包data.table

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-data-table/

datatable-title

前言

在R语言中,我们最常用的数据类型是data.frame,绝大多数的数据处理的操作都是围绕着data.frame结构来做的。用data.frame可以很方便的进行数据存储和数据查询,配合apply族函数对数据循环计算,也可也用plyr, reshape2, melt等包对数据实现切分、分组、聚合等的操作。在数据量不太大的时候,使用起来很方便。但是,用data.frame结构处理数据时并不是很高效,特别是在稍大一点数据规模的时候,就会明显变慢。

data.table其实提供了一套和data.frame类似的功能,特别增加了索引的设置,让数据操作非常高效,可能会提升1-2数量级。本章就将data.table包的使用方法。

目录

  1. data.table包介绍
  2. data.table包的使用
  3. data.table包性能对比

1. data.table包介绍

data.table包是一个data.frame的扩展工具集,可以通过自定义keys来设置索引,实现高效的数据索引查询、快速分组、快速连接、快速赋值等数据操作。data.table主要通过二元检索法大大提高数据操作的效率,它也兼容适用于data.frame的向量检索法。同时,data.table对于大数据的快速聚合也有很好的效果,官方介绍说对于 100GB规模内存数据处理,运行效率还是很好的。那么,就让我们试验一下吧。

data.table项目地址:https://cran.r-project.org/web/packages/data.table/

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

data.table包是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。


~ R
> install.packages("data.table")
> library(data.table)

2. data.table包的使用

接下来,开始用data.table包,并熟悉一下data.table包的基本操作。

2.1 用data.table创建数据集

通常情况,我们用data.frame创建一个数据集时,可以使用下面的语法。


# 创建一个data.frame数据框
> df<-data.frame(a=c('A','B','C','A','A','B'),b=rnorm(6))
> df
  a          b
1 A  1.3847248
2 B  0.6387315
3 C -1.8126626
4 A -0.0265709
5 A -0.3292935
6 B -1.0891958

对于data.table来说,创建一个数据集是和data.frame同样语法。


# 创建一个data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a           b
1: A  0.09174236
2: B -0.84029180
3: C -0.08157873
4: A -0.39992084
5: A -1.66034154
6: B -0.33526447

检查df, dt两个对象的类型,可以看到data.table是对data.frame的扩展类型。


# data.frame类型
> class(df)
[1] "data.frame"

# data.table类型
> class(dt)
[1] "data.table" "data.frame"

如果data.table仅仅是对data.frame的做了S3的扩展类型,那么data.table是不可能做到对data.frame从效率有极大的改进的。为了验证,我们需要检查一下data.table代码的结构定义。


# 打印data.table函数定义
> data.table
function (..., keep.rownames = FALSE, check.names = FALSE, key = NULL) 
{
    x <- list(...)
    if (!.R.listCopiesNamed) 
        .Call(CcopyNamedInList, x)
    if (identical(x, list(NULL)) || identical(x, list(list())) || 
        identical(x, list(data.frame(NULL))) || identical(x, 
        list(data.table(NULL)))) 
        return(null.data.table())
    tt <- as.list(substitute(list(...)))[-1L]
    vnames = names(tt)
    if (is.null(vnames)) 
        vnames = rep.int("", length(x))
    vnames[is.na(vnames)] = ""
    novname = vnames == ""
    if (any(!novname)) {
        if (any(vnames[!novname] == ".SD")) 
            stop("A column may not be called .SD. That has special meaning.")
    }
    for (i in which(novname)) {
        if (is.null(ncol(x[[i]]))) {
            if ((tmp <- deparse(tt[[i]])[1]) == make.names(tmp)) 
                vnames[i] <- tmp
        }
    }
    tt = vnames == ""
    if (any(tt)) 
        vnames[tt] = paste("V", which(tt), sep = "")
    n <- length(x)
    if (n < 1L) 
        return(null.data.table())
    if (length(vnames) != n) 
        stop("logical error in vnames")
    vnames <- as.list.default(vnames)
    nrows = integer(n)
    numcols = integer(n)
    for (i in seq_len(n)) {
        xi = x[[i]]
        if (is.null(xi)) 
            stop("column or argument ", i, " is NULL")
        if ("POSIXlt" %chin% class(xi)) {
            warning("POSIXlt column type detected and converted to POSIXct. We do not recommend use of POSIXlt at all because it uses 40 bytes to store one date.")
            x[[i]] = as.POSIXct(xi)
        }
        else if (is.matrix(xi) || is.data.frame(xi)) {
            xi = as.data.table(xi, keep.rownames = keep.rownames)
            x[[i]] = xi
            numcols[i] = length(xi)
        }
        else if (is.table(xi)) {
            x[[i]] = xi = as.data.table.table(xi, keep.rownames = keep.rownames)
            numcols[i] = length(xi)
        }
        nrows[i] <- NROW(xi)
        if (numcols[i] > 0L) {
            namesi <- names(xi)
            if (length(namesi) == 0L) 
                namesi = rep.int("", ncol(xi))
            namesi[is.na(namesi)] = ""
            tt = namesi == ""
            if (any(tt)) 
                namesi[tt] = paste("V", which(tt), sep = "")
            if (novname[i]) 
                vnames[[i]] = namesi
            else vnames[[i]] = paste(vnames[[i]], namesi, sep = ".")
        }
    }
    nr <- max(nrows)
    ckey = NULL
    recycledkey = FALSE
    for (i in seq_len(n)) {
        xi = x[[i]]
        if (is.data.table(xi) && haskey(xi)) {
            if (nrows[i] < nr) 
                recycledkey = TRUE
            else ckey = c(ckey, key(xi))
        }
    }
    for (i in which(nrows < nr)) {
        xi <- x[[i]]
        if (identical(xi, list())) {
            x[[i]] = vector("list", nr)
            next
        }
        if (nrows[i] == 0L) 
            stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the ", 
                nr, " rows in the longest column. Or, all columns can be 0 length, for insert()ing rows into.")
        if (nr%%nrows[i] != 0L) 
            warning("Item ", i, " is of size ", nrows[i], " but maximum size is ", 
                nr, " (recycled leaving remainder of ", nr%%nrows[i], 
                " items)")
        if (is.data.frame(xi)) {
            ..i = rep(seq_len(nrow(xi)), length.out = nr)
            x[[i]] = xi[..i, , drop = FALSE]
            next
        }
        if (is.atomic(xi) || is.list(xi)) {
            x[[i]] = rep(xi, length.out = nr)
            next
        }
        stop("problem recycling column ", i, ", try a simpler type")
        stop("argument ", i, " (nrow ", nrows[i], ") cannot be recycled without remainder to match longest nrow (", 
            nr, ")")
    }
    if (any(numcols > 0L)) {
        value = vector("list", sum(pmax(numcols, 1L)))
        k = 1L
        for (i in seq_len(n)) {
            if (is.list(x[[i]]) && !is.ff(x[[i]])) {
                for (j in seq_len(length(x[[i]]))) {
                  value[[k]] = x[[i]][[j]]
                  k = k + 1L
                }
            }
            else {
                value[[k]] = x[[i]]
                k = k + 1L
            }
        }
    }
    else {
        value = x
    }
    vnames <- unlist(vnames)
    if (check.names) 
        vnames <- make.names(vnames, unique = TRUE)
    setattr(value, "names", vnames)
    setattr(value, "row.names", .set_row_names(nr))
    setattr(value, "class", c("data.table", "data.frame"))
    if (!is.null(key)) {
        if (!is.character(key)) 
            stop("key argument of data.table() must be character")
        if (length(key) == 1L) {
            key = strsplit(key, split = ",")[[1L]]
        }
        setkeyv(value, key)
    }
    else {
        if (length(ckey) && !recycledkey && !any(duplicated(ckey)) && 
            all(ckey %in% names(value)) && !any(duplicated(names(value)[names(value) %in% 
            ckey]))) 
            setattr(value, "sorted", ckey)
    }
    alloc.col(value)
}
<bytecode: 0x0000000017bfb990>
<environment: namespace:data.table>

从上面的整个大段代码来看,data.table的代码定义中并没有使用data.frame结构的依赖的代码,data.table都在自己函数定义中做的数据处理,所以我们可以确认data.table和data.frame的底层结果是不一样的。

那么为什么从刚刚用class函数检查data.table对象时,会看到data.table和data.frame的扩展关系呢?这里就要了解R语言中对于S3面向对象系统的结构设计了,关于S3的面向对象设计,请参考文章R语言基于S3的面向对象编程

从上面代码中,倒数第17行找到 setattr(value, "class", c("data.table", "data.frame")) 这行,发现这个扩展的定义是作者主动设计的,那么其实就可以理解为,data.table包的作者希望data.table使用起来更像data.frame,所以通过一些包装让使用者无切换成本的。

2.2 data.table和data.frame相互转换

如果想把data.frame对象和data.table对象进行转换,转换的代码是非常容易的,直接转换就可以了。

从一个data.frame对象转型到data.table对象。


# 创建一个data.frame对象
> df<-data.frame(a=c('A','B','C','A','A','B'),b=rnorm(6))

# 检查类型
> class(df)
[1] "data.frame"

# 转型为data.table对象
> df2<-data.table(df)

# 检查类型
> class(df2)
[1] "data.table" "data.frame"

从一个data.table对象转型到data.frame对象。


# 创建一个data.table对象
> dt <- data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))

# 检查类型
> class(dt)
[1] "data.table" "data.frame"

# 转型为data.frame对象
> dt2<-data.frame(dt)

# 检查类型
> class(dt2)
[1] "data.frame"

2.3 用data.table进行查询

由于data.table对用户使用上是希望和data.frame的操作尽量相似,所以适用于data.frame的查询方法基本都适用于data.table,同时data.table自己具有的一些特性,提供了自定义keys来进行高效的查询。

下面先看一下,data.table基本的数据查义方法。


# 创建一个data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a          b
1: A  0.7792728
2: B  1.4870693
3: C  0.9890549
4: A -0.2769280
5: A -1.3009561
6: B  1.1076424

按行或按列查询


# 取第二行的数据
> dt[2,]
   a        b
1: B 1.487069

# 不加,也可以
> dt[2]
   a        b
1: B 1.487069


# 取a列的值
> dt$a
[1] "A" "B" "C" "A" "A" "B"

# 取a列中值为B的行
> dt[a=="B",]
   a        b
1: B 1.487069
2: B 1.107642

# 取a列中值为B的行的判断
> dt[,a=='B']
[1] FALSE  TRUE FALSE FALSE FALSE  TRUE

# 取a列中值为B的行的索引
> which(dt[,a=='B'])
[1] 2 6

上面的操作,不管是用索引值,== 和 $ 都是data.frame操作一样的。下面我们取data.table特殊设计的keys来查询。


# 设置a列为索引列
> setkey(dt,a)

# 打印dt对象,发现数据已经按照a列字母对应ASCII码值进行了排序。
> dt
   a          b
1: A  0.7792728
2: A -0.2769280
3: A -1.3009561
4: B  1.4870693
5: B  1.1076424
6: C  0.9890549

按照自定义的索引进行查询。


# 取a列中值为B的行
> dt["B",]
   a        b
1: B 1.487069
2: B 1.107642

# 取a列中值为B的行,并保留第一行
> dt["B",mult="first"]
   a        b
1: B 1.487069

# 取a列中值为B的行,并保留最后一行
> dt["B",mult="last"]
   a        b
1: B 1.107642

# 取a列中值为b的行,没有数据则为NA
> dt["b"]
   a  b
1: b NA

从上面的代码测试中我们可以看出,在定义了keys后,我们要查询的时候就不用再指定列了,默认会把方括号中的第一位置留给keys,作为索引匹配的查询条件。从代码的角度,又节省了一个变量定义的代码。同时,可以用mult参数,对数据集增加过滤条件,让代码本身也变得更高效。如果查询的值,不是索引列包括的值,则返回NA。

2.4 对data.table对象进行增、删、改操作

给data.table对象增加一列,可以使用这样的格式 data.table[, colname := var1]。


# 创建data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a           b
1: A  1.51765578
2: B  0.01182553
3: C  0.71768667
4: A  0.64578235
5: A -0.04210508
6: B  0.29767383

# 增加1列,列名为c
> dt[,c:=b+2]
> dt
   a           b        c
1: A  1.51765578 3.517656
2: B  0.01182553 2.011826
3: C  0.71768667 2.717687
4: A  0.64578235 2.645782
5: A -0.04210508 1.957895
6: B  0.29767383 2.297674

# 增加2列,列名为c1,c2
> dt[,`:=`(c1 = 1:6, c2 = 2:7)]
> dt
   a          b        c c1 c2
1: A  0.7545555 2.754555  1  2
2: B  0.5556030 2.555603  2  3
3: C -0.1080962 1.891904  3  4
4: A  0.3983576 2.398358  4  5
5: A -0.9141015 1.085899  5  6
6: B -0.8577402 1.142260  6  7

# 增加2列,第2种写法
> dt[,c('d1','d2'):=list(1:6,2:7)]
> dt
   a          b        c c1 c2 d1 d2
1: A  0.7545555 2.754555  1  2  1  2
2: B  0.5556030 2.555603  2  3  2  3
3: C -0.1080962 1.891904  3  4  3  4
4: A  0.3983576 2.398358  4  5  4  5
5: A -0.9141015 1.085899  5  6  5  6
6: B -0.8577402 1.142260  6  7  6  7

给data.table对象删除一列时,就是给这列赋值为空,使用这样的格式 data.table[, colname := NULL]。我们继续使用刚才创建的dt对象。


# 删除c1列
> dt[,c1:=NULL]
> dt
   a          b        c c2 d1 d2
1: A  0.7545555 2.754555  2  1  2
2: B  0.5556030 2.555603  3  2  3
3: C -0.1080962 1.891904  4  3  4
4: A  0.3983576 2.398358  5  4  5
5: A -0.9141015 1.085899  6  5  6
6: B -0.8577402 1.142260  7  6  7

# 同时删除d1,d2列
> dt[,c('d1','d2'):=NULL]
> dt
   a          b        c c2
1: A  0.7545555 2.754555  2
2: B  0.5556030 2.555603  3
3: C -0.1080962 1.891904  4
4: A  0.3983576 2.398358  5
5: A -0.9141015 1.085899  6
6: B -0.8577402 1.142260  7

修改data.table对象的值,就是通过索引定位后进行值的替换,通过这样的格式 data.table[condition, colname := 0]。我们继续使用刚才创建的dt对象。


# 给b赋值为30
> dt[,b:=30]
> dt
   a  b        c c2
1: A 30 2.754555  2
2: B 30 2.555603  3
3: C 30 1.891904  4
4: A 30 2.398358  5
5: A 30 1.085899  6
6: B 30 1.142260  7

# 对a列值为B的行,c2列值值大于3的行,的b列赋值为100
> dt[a=='B' & c2>3, b:=100]
> dt
   a   b        c c2
1: A  30 2.754555  2
2: B  30 2.555603  3
3: C  30 1.891904  4
4: A  30 2.398358  5
5: A  30 1.085899  6
6: B 100 1.142260  7

# 还有另一种写法
> dt[,b:=ifelse(a=='B' & c2>3,50,b)]
> dt
   a  b        c c2
1: A 30 2.754555  2
2: B 30 2.555603  3
3: C 30 1.891904  4
4: A 30 2.398358  5
5: A 30 1.085899  6
6: B 50 1.142260  7

2.5 data.table的分组计算

基于data.frame对象做分组计算时,要么使用apply函数自己处理,要么用plyr包的分组计算功能。对于data.table包本身就支持了分组计算,很像SQL的group by这样的功能,这是data.table包主打的优势。

比如,按a列分组,并对b列按分组求和。


# 创建数据
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a          b
1: A  1.4781041
2: B  1.4135736
3: C -0.6593834
4: A -0.1231766
5: A -1.7351749
6: B -0.2528973

# 对整个b列数据求和
> dt[,sum(b)]
[1] 0.1210455

# 按a列分组,并对b列按分组求和
> dt[,sum(b),by=a]
   a         V1
1: A -0.3802474
2: B  1.1606763
3: C -0.6593834

2.6 多个data.table的连接操作

在操作数据的时候,经常会出现2个或多个数据集通过一个索引键进行关联,而我们的算法要把多种数据合并到一起再进行处理,那么这个时候就会用的数据的连接操作,类似关系型数据库的左连接(LEFT JOIN)。

举个例子,学生考试的场景。按照ER设计方法,我们通常会按照实体进行数据划分。这里存在2个实体,一个是学生,一个是成绩。学生实体会包括,学生姓名等的基本资料,而成绩实体会包括,考试的科目,考试的成绩。

假设有6个学生,分别参加A和B两门考试,每门考试得分是不一样的。


# 6个学生
> student <- data.table(id=1:6,name=c('Dan','Mike','Ann','Yang','Li','Kate'));student
   id name
1:  1  Dan
2:  2 Mike
3:  3  Ann
4:  4 Yang
5:  5   Li
6:  6 Kate

# 分别参加A和B两门考试
> score <- data.table(id=1:12,stuId=rep(1:6,2),score=runif(12,60,99),class=c(rep('A',6),rep('B',6)));score
    id stuId    score class
 1:  1     1 89.18497     A
 2:  2     2 61.76987     A
 3:  3     3 74.67598     A
 4:  4     4 64.08165     A
 5:  5     5 85.00035     A
 6:  6     6 95.25072     A
 7:  7     1 81.42813     B
 8:  8     2 82.16083     B
 9:  9     3 69.53405     B
10: 10     4 89.01985     B
11: 11     5 96.77196     B
12: 12     6 97.02833     B

通过学生ID,把学生和考试成绩2个数据集进行连接。


# 设置score数据集,key为stuId
> setkey(score,"stuId")

# 设置student数据集,key为id
> setkey(student,"id")

# 合并两个数据集的数据
> student[score,nomatch=NA,mult="all"]
    id name i.id    score class
 1:  1  Dan    1 89.18497     A
 2:  1  Dan    7 81.42813     B
 3:  2 Mike    2 61.76987     A
 4:  2 Mike    8 82.16083     B
 5:  3  Ann    3 74.67598     A
 6:  3  Ann    9 69.53405     B
 7:  4 Yang    4 64.08165     A
 8:  4 Yang   10 89.01985     B
 9:  5   Li    5 85.00035     A
10:  5   Li   11 96.77196     B
11:  6 Kate    6 95.25072     A
12:  6 Kate   12 97.02833     B

最后我们会看到,两个数据集的结果合并在了一个结果数据集中。这样就完成了,数据连接的操作。从代码的角度来看,1行代码要比用data.frame去拼接方便的多。

3. data.table包性能对比

现在很多时候我们需要处理的数据量是很大的,动辄上百万行甚至上千万行。如果我们要使用R对其进行分析或处理,在不增加硬件的条件下,就需要用一些高性能的数据包进行数据的操作。这里就会发现data.table是非常不错的一个选择。

3.1 data.table和data.frame索引查询性能对比

我们先生成一个稍大数据集,包括2列x和y分别用英文字母进行赋值,100,000,004行,占内存大小1.6G。分别比较data.frame操作和data.table操作的索引查询性能耗时。

使用data.frame创建数据集。


# 清空环境变量
> rm(list=ls())

# 设置大小
> size = ceiling(1e8/26^2)
[1] 147929

# 计算data.frame对象生成的时间 
> t0=system.time(
+   df <- data.frame(x=rep(LETTERS,each=26*size),y=rep(letters,each=size))
+ )

# 打印时间
> t0
用户 系统 流逝 
3.63 0.18 3.80 

# df对象的行数
> nrow(df)
[1] 100000004

# 占用内存
> object.size(df)
1600003336 bytes

# 进行条件查询
> t1=system.time(
+   val1 <- dt[dt$x=="R" & dt$y=="h",]
+ )

# 查询时间
> t1
用户 系统 流逝 
8.53 0.84 9.42 

再使用data.table创建数据集。


# 清空环境变量
> rm(list=ls())

# 设置大小
> size = ceiling(1e8/26^2)
[1] 147929

# 计算data.table对象生成的时间 
> t3=system.time(
+   dt <- data.table(x=rep(LETTERS,each=26*size),y=rep(letters,each=size))
+ )

# 生成对象的时间
> t3
用户 系统 流逝 
3.22 0.39 3.63 

# 对象行数
> nrow(dt)
[1] 100000004

# 占用内存
> object.size(dt)
2000004040 bytes

# 进行条件查询
> t3=system.time(
+ val2 <- dt[x=="R" & y=="h",]
+ )

# 查询时间
> t3
用户 系统 流逝 
6.52 0.26 6.80 

从上面的测试来看,创建对象时,data.table比data.frame显著的高效,而查询效果则并不明显。我们对data.table数据集设置索引,试试有索引查询的效果。


# 设置key索引列为x,y
> setkey(dt,x,y)

# 条件查询
> t4=system.time(
+   val3  <- dt[list("R","h")]
+ )

# 查看时间
> t4
用户 系统 流逝 
0.00 0.00 0.06 

设置索引列后,按索引进行查询,无CPU耗时。震惊了!!

3.2 data.table和data.frame的赋值性能对比

对于赋值操作来说,通常会分为2个动作,先查询再值替换,对于data.frame和data.table都是会按照这个过程来实现的。从上一小节中,可以看到通过索引查询时data.table比data.frame明显的速度要快,对于赋值的操作测试,我们就要最好避免复杂的查询。

对x列值为R的行,对应的y的值进行赋值。首先测试data.frame的计算时间。


> size = 1000000
> df <- data.frame(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+   df$y[which(df$x=='R')]<-10
+ )
用户 系统 流逝 
0.75 0.01 0.77 

计算data.table的赋值时间。


> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+   dt[x=='R', y:=10]
+ )
用户 系统 流逝 
0.11 0.00 0.11 
> setkey(dt,x)
> system.time(
+   dt['R', y:=10]
+ )
用户 系统 流逝 
0.01 0.00 0.02 

通过对比data.table和data.frame的赋值测试,有索引的data.table性能优势是非常明显的。我们增大数据量,再做一次赋值测试。


> size = 1000000*5
> df <- data.frame(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+   df$y[which(df$x=='R')]<-10
+ )
用户 系统 流逝 
3.22 0.25 3.47 

> rm(list=ls())
> size = 1000000*5
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> setkey(dt,x)
> system.time(
+   dt['R', y:=10]
+ )
用户 系统 流逝 
0.08 0.01 0.08 

对于增加数据量后data.table,要比data.frame的赋值快更多倍。

3.3 data.table和tapply分组计算性能对比

再对比一下data.table处理数据和tapply的分组计算的性能。测试同样地只做一个简单的计算设定,比如,对一个数据集按x列分组对y列求和。


# 设置数据集大小
> size = 100000
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))

# 设置key为x列
> setkey(dt,x)

# 计算按x列分组,对y列的求和时间
> system.time(
+ r1<-dt[,sum(y),by=x]
+ )
用户 系统 流逝 
0.03 0.00 0.03 

# 用tapply实现,计算求和时间
> system.time(
+ r2<-tapply(dt$y,dt$x,sum)
+ )
用户 系统 流逝 
0.25 0.05 0.30 

# 查看数据集大小, 40mb
> object.size(dt)
41602688 bytes

对于40mb左右的数据来说,tapply比data.table要快,那么我增加数据集的大小,给size*10再测试一下。


> size = 100000*10
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> setkey(dt,x)
> val3<-dt[list("R")]
 
> system.time(
+   r1<-dt[,sum(y),by=x]
+ )
用户 系统 流逝 
0.25 0.03 0.28 

> system.time(
+   r2<-tapply(dt$y,dt$x,sum)
+ )
用户 系统 流逝 
2.56 0.36 2.92 

# 400mb数据 
> object.size(dt)
416002688 bytes

对于400mb的数据来说,data.table的计算性能已经明显优于tapply了,再把数据时增加让size*5。


> size = 100000*10*5
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> setkey(dt,x)
 
> system.time(
+     r1<-dt[,sum(y),by=x]
+ )
用户 系统 流逝 
1.50 0.11 1.61 

> system.time(
+     r2<-tapply(dt$y,dt$x,sum)
+ )
 用户  系统  流逝 
13.30  3.58 16.90 
 
# 2G数据
> object.size(dt)
2080002688 bytes

对于2G左右的数据来说,tapply总耗时到了16秒,而data.table为1.6秒,从2个的测试来说,大于400mb数据时CPU耗时是线性的。

把上几组测试数据放到一起,下图所示。

data-table

通过上面的对比,我们发现data.table包比tapply快10倍,比data.frame赋值操作快30倍,比data.frame的索引查询快100倍,绝对是值得花精力去学习的一个包。

赶紧用data.table包去优化你的程序吧!

转载请注明出处:
http://blog.fens.me/r-data-table/

打赏作者

掌握R语言中的apply函数族

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-apply/

apply-title

前言

刚开始接触R语言时,会听到各种的R语言使用技巧,其中最重要的一条就是不要用循环,效率特别低,要用向量计算代替循环计算。

那么,这是为什么呢?原因在于R的循环操作for和while,都是基于R语言本身来实现的,而向量操作是基于底层的C语言函数实现的,从性能上来看,就会有比较明显的差距了。那么如何使用C的函数来实现向量计算呢,就是要用到apply的家族函数,包括apply, sapply, tapply, mapply, lapply, rapply, vapply, eapply等。

目录

  1. apply的家族函数
  2. apply函数
  3. lapply函数
  4. sapply函数
  5. vapply函数
  6. mapply函数
  7. tapply函数
  8. rapply函数
  9. eapply函数

1. apply的家族函数

apply函数族是R语言中数据处理的一组核心函数,通过使用apply函数,我们可以实现对数据的循环、分组、过滤、类型控制等操作。但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是使用者玩不转一类核心函数。

很多R语言新手,写了很多的for循环代码,也不愿意多花点时间把apply函数的使用方法了解清楚,最后把R代码写的跟C似得,我严重鄙视只会写for的R程序员。

apply函数本身就是解决数据循环处理的问题,为了面向不同的数据类型,不同的返回值,apply函数组成了一个函数族,包括了8个功能类似的函数。这其中有些函数很相似,有些也不是太一样的。

apply

我一般最常用的函数为apply和sapply,下面将分别介绍这8个函数的定义和使用方法。

2. apply函数

apply函数是最常用的代替for循环的函数。apply函数可以对矩阵、数据框、数组(二维、多维),按行或列进行循环计算,对子元素进行迭代,并把子元素以参数传递的形式给自定义的FUN函数中,并以返回计算结果。

函数定义:

apply(X, MARGIN, FUN, ...)

参数列表:

  • X:数组、矩阵、数据框
  • MARGIN: 按行计算或按按列计算,1表示按行,2表示按列
  • FUN: 自定义的调用函数
  • …: 更多参数,可选

比如,对一个矩阵的每一行求和,下面就要用到apply做循环了。


> x<-matrix(1:12,ncol=3)
> apply(x,1,sum)
[1] 15 18 21 24

下面计算一个稍微复杂点的例子,按行循环,让数据框的x1列加1,并计算出x1,x2列的均值。


# 生成data.frame
> x <- cbind(x1 = 3, x2 = c(4:1, 2:5)); x
     x1 x2
[1,]  3  4
[2,]  3  3
[3,]  3  2
[4,]  3  1
[5,]  3  2
[6,]  3  3
[7,]  3  4
[8,]  3  5

# 自定义函数myFUN,第一个参数x为数据
# 第二、三个参数为自定义参数,可以通过apply的'...'进行传入。
> myFUN<- function(x, c1, c2) {
+   c(sum(x[c1],1), mean(x[c2])) 
+ }

# 把数据框按行做循环,每行分别传递给myFUN函数,设置c1,c2对应myFUN的第二、三个参数
> apply(x,1,myFUN,c1='x1',c2=c('x1','x2'))
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]  4.0    4  4.0    4  4.0    4  4.0    4
[2,]  3.5    3  2.5    2  2.5    3  3.5    4

通过这个上面的自定义函数myFUN就实现了,一个常用的循环计算。

如果直接用for循环来实现,那么代码如下:


# 定义一个结果的数据框
> df<-data.frame()

# 定义for循环
> for(i in 1:nrow(x)){
+   row<-x[i,]                                         # 每行的值
+   df<-rbind(df,rbind(c(sum(row[1],1), mean(row))))   # 计算,并赋值到结果数据框
+ }

# 打印结果数据框
> df
  V1  V2
1  4 3.5
2  4 3.0
3  4 2.5
4  4 2.0
5  4 2.5
6  4 3.0
7  4 3.5
8  4 4.0

通过for循环的方式,也可以很容易的实现上面计算过程,但是这里还有一些额外的操作需要自己处理,比如构建循环体、定义结果数据集、并合每次循环的结果到结果数据集。

对于上面的需求,还有第三种实现方法,那就是完成利用了R的特性,通过向量化计算来完成的。


> data.frame(x1=x[,1]+1,x2=rowMeans(x))
  x1  x2
1  4 3.5
2  4 3.0
3  4 2.5
4  4 2.0
5  4 2.5
6  4 3.0
7  4 3.5
8  4 4.0

那么,一行就可以完成整个计算过程了。

接下来,我们需要再比较一下3种操作上面性能上的消耗。


# 清空环境变量
> rm(list=ls())

# 封装fun1
> fun1<-function(x){
+   myFUN<- function(x, c1, c2) {
+     c(sum(x[c1],1), mean(x[c2])) 
+   }
+   apply(x,1,myFUN,c1='x1',c2=c('x1','x2'))
+ }

# 封装fun2
> fun2<-function(x){
+   df<-data.frame()
+   for(i in 1:nrow(x)){
+     row<-x[i,]
+     df<-rbind(df,rbind(c(sum(row[1],1), mean(row))))
+   }
+ }

# 封装fun3
> fun3<-function(x){
+   data.frame(x1=x[,1]+1,x2=rowMeans(x))
+ }

# 生成数据集
> x <- cbind(x1=3, x2 = c(400:1, 2:500))

# 分别统计3种方法的CPU耗时。
> system.time(fun1(x))
用户 系统 流逝 
0.01 0.00 0.02 

> system.time(fun2(x))
用户 系统 流逝 
0.19 0.00 0.18 

> system.time(fun3(x))
用户 系统 流逝 
   0    0    0 

从CPU的耗时来看,用for循环实现的计算是耗时最长的,apply实现的循环耗时很短,而直接使用R语言内置的向量计算的操作几乎不耗时。通过上面的测试,对同一个计算来说,优先考虑R语言内置的向量计算,必须要用到循环时则使用apply函数,应该尽量避免显示的使用for,while等操作方法。

3. lapply函数

lapply函数是一个最基础循环操作函数之一,用来对list、data.frame数据集进行循环,并返回和X长度同样的list结构作为结果集,通过lapply的开头的第一个字母’l’就可以判断返回结果集的类型。

函数定义:

lapply(X, FUN, ...)

参数列表:

  • X:list、data.frame数据
  • FUN: 自定义的调用函数
  • …: 更多参数,可选

比如,计算list中的每个KEY对应该的数据的分位数。


# 构建一个list数据集x,分别包括a,b,c 三个KEY值。
> x <- list(a = 1:10, b = rnorm(6,10,5), c = c(TRUE,FALSE,FALSE,TRUE));x
$a
 [1]  1  2  3  4  5  6  7  8  9 10
$b
[1]  0.7585424 14.3662366 13.3772979 11.6658990  9.7011387 21.5321427
$c
[1]  TRUE FALSE FALSE  TRUE

# 分别计算每个KEY对应该的数据的分位数。
> lapply(x,fivenum)
$a
[1]  1.0  3.0  5.5  8.0 10.0

$b
[1]  0.7585424  9.7011387 12.5215985 14.3662366 21.5321427

$c
[1] 0.0 0.0 0.5 1.0 1.0

lapply就可以很方便地把list数据集进行循环操作了,还可以用data.frame数据集按列进行循环,但如果传入的数据集是一个向量或矩阵对象,那么直接使用lapply就不能达到想要的效果了。

比如,对矩阵的列求和。


# 生成一个矩阵
> x <- cbind(x1=3, x2=c(2:1,4:5))
> x; class(x)
     x1 x2
[1,]  3  2
[2,]  3  1
[3,]  3  4
[4,]  3  5
[1] "matrix"

# 求和
> lapply(x, sum)
[[1]]
[1] 3

[[2]]
[1] 3

[[3]]
[1] 3

[[4]]
[1] 3

[[5]]
[1] 2

[[6]]
[1] 1

[[7]]
[1] 4

[[8]]
[1] 5

lapply会分别循环矩阵中的每个值,而不是按行或按列进行分组计算。

如果对数据框的列求和。


> lapply(data.frame(x), sum)
$x1
[1] 12

$x2
[1] 12

lapply会自动把数据框按列进行分组,再进行计算。

4. sapply函数

sapply函数是一个简化版的lapply,sapply增加了2个参数simplify和USE.NAMES,主要就是让输出看起来更友好,返回值为向量,而不是list对象。

函数定义:

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES = TRUE)

参数列表:

  • X:数组、矩阵、数据框
  • FUN: 自定义的调用函数
  • …: 更多参数,可选
  • simplify: 是否数组化,当值array时,输出结果按数组进行分组
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

我们还用上面lapply的计算需求进行说明。


> x <- cbind(x1=3, x2=c(2:1,4:5))

# 对矩阵计算,计算过程同lapply函数
> sapply(x, sum)
[1] 3 3 3 3 2 1 4 5

# 对数据框计算
> sapply(data.frame(x), sum)
x1 x2 
12 12 

# 检查结果类型,sapply返回类型为向量,而lapply的返回类型为list
> class(lapply(x, sum))
[1] "list"
> class(sapply(x, sum))
[1] "numeric"

如果simplify=FALSE和USE.NAMES=FALSE,那么完全sapply函数就等于lapply函数了。


> lapply(data.frame(x), sum)
$x1
[1] 12

$x2
[1] 12

> sapply(data.frame(x), sum, simplify=FALSE, USE.NAMES=FALSE)
$x1
[1] 12

$x2
[1] 12

对于simplify为array时,我们可以参考下面的例子,构建一个三维数组,其中二个维度为方阵。


> a<-1:2

# 按数组分组
> sapply(a,function(x) matrix(x,2,2), simplify='array')
, , 1

     [,1] [,2]
[1,]    1    1
[2,]    1    1

, , 2

     [,1] [,2]
[1,]    2    2
[2,]    2    2

# 默认情况,则自动合并分组
> sapply(a,function(x) matrix(x,2,2))
     [,1] [,2]
[1,]    1    2
[2,]    1    2
[3,]    1    2
[4,]    1    2

对于字符串的向量,还可以自动生成数据名。


> val<-head(letters)

# 默认设置数据名
> sapply(val,paste,USE.NAMES=TRUE)
  a   b   c   d   e   f 
"a" "b" "c" "d" "e" "f" 

# USE.NAMES=FALSE,则不设置数据名
> sapply(val,paste,USE.NAMES=FALSE)
[1] "a" "b" "c" "d" "e" "f"

5. vapply函数

vapply类似于sapply,提供了FUN.VALUE参数,用来控制返回值的行名,这样可以让程序更健壮。

函数定义:

vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

参数列表:

  • X:数组、矩阵、数据框
  • FUN: 自定义的调用函数
  • FUN.VALUE: 定义返回值的行名row.names
  • …: 更多参数,可选
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

比如,对数据框的数据进行累计求和,并对每一行设置行名row.names


# 生成数据集
> x <- data.frame(cbind(x1=3, x2=c(2:1,4:5)))

# 设置行名,4行分别为a,b,c,d
> vapply(x,cumsum,FUN.VALUE=c('a'=0,'b'=0,'c'=0,'d'=0))
  x1 x2
a  3  2
b  6  3
c  9  7
d 12 12

# 当不设置时,为默认的索引值
> a<-sapply(x,cumsum);a
     x1 x2
[1,]  3  2
[2,]  6  3
[3,]  9  7
[4,] 12 12

# 手动的方式设置行名
> row.names(a)<-c('a','b','c','d')
> a
  x1 x2
a  3  2
b  6  3
c  9  7
d 12 12

通过使用vapply可以直接设置返回值的行名,这样子做其实可以节省一行的代码,让代码看起来更顺畅,当然如果不愿意多记一个函数,那么也可以直接忽略它,只用sapply就够了。

6. mapply函数

mapply也是sapply的变形函数,类似多变量的sapply,但是参数定义有些变化。第一参数为自定义的FUN函数,第二个参数’…’可以接收多个数据,作为FUN函数的参数调用。

函数定义:

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,USE.NAMES = TRUE)

参数列表:

  • FUN: 自定义的调用函数
  • …: 接收多个数据
  • MoreArgs: 参数列表
  • SIMPLIFY: 是否数组化,当值array时,输出结果按数组进行分组
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

比如,比较3个向量大小,按索引顺序取较大的值。


> set.seed(1)

# 定义3个向量
> x<-1:10
> y<-5:-4
> z<-round(runif(10,-5,5))

# 按索引顺序取较大的值。
> mapply(max,x,y,z)
 [1]  5  4  3  4  5  6  7  8  9 10

再看一个例子,生成4个符合正态分布的数据集,分别对应的均值和方差为c(1,10,100,1000)。


> set.seed(1)

# 长度为4
> n<-rep(4,4)

# m为均值,v为方差
> m<-v<-c(1,10,100,1000)

# 生成4组数据,按列分组
> mapply(rnorm,n,m,v)
          [,1]      [,2]      [,3]       [,4]
[1,] 0.3735462 13.295078 157.57814   378.7594
[2,] 1.1836433  1.795316  69.46116 -1214.6999
[3,] 0.1643714 14.874291 251.17812  2124.9309
[4,] 2.5952808 17.383247 138.98432   955.0664

由于mapply是可以接收多个参数的,所以我们在做数据操作的时候,就不需要把数据先合并为data.frame了,直接一次操作就能计算出结果了。

7. tapply函数

tapply用于分组的循环计算,通过INDEX参数可以把数据集X进行分组,相当于group by的操作。

函数定义:

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

参数列表:

  • X: 向量
  • INDEX: 用于分组的索引
  • FUN: 自定义的调用函数
  • …: 接收多个数据
  • simplify : 是否数组化,当值array时,输出结果按数组进行分组

比如,计算不同品种的鸢尾花的花瓣(iris)长度的均值。


# 通过iris$Species品种进行分组
> tapply(iris$Petal.Length,iris$Species,mean)
    setosa versicolor  virginica 
     1.462      4.260      5.552 

对向量x和y进行计算,并以向量t为索引进行分组,求和。


> set.seed(1)

# 定义x,y向量
> x<-y<-1:10;x;y
 [1]  1  2  3  4  5  6  7  8  9 10
 [1]  1  2  3  4  5  6  7  8  9 10

# 设置分组索引t
> t<-round(runif(10,1,100)%%2);t
 [1] 1 2 2 1 1 2 1 0 1 1

# 对x进行分组求和
> tapply(x,t,sum)
 0  1  2 
 8 36 11 

由于tapply只接收一个向量参考,通过’…’可以把再传给你FUN其他的参数,那么我们想去y向量也进行求和,把y作为tapply的第4个参数进行计算。


> tapply(x,t,sum,y)
 0  1  2 
63 91 66 

得到的结果并不符合我们的预期,结果不是把x和y对应的t分组后求和,而是得到了其他的结果。第4个参数y传入sum时,并不是按照循环一个一个传进去的,而是每次传了完整的向量数据,那么再执行sum时sum(y)=55,所以对于t=0时,x=8 再加上y=55,最后计算结果为63。那么,我们在使用’…’去传入其他的参数的时候,一定要看清楚传递过程的描述,才不会出现的算法上的错误。

8. rapply函数

rapply是一个递归版本的lapply,它只处理list类型数据,对list的每个元素进行递归遍历,如果list包括子元素则继续遍历。

函数定义:

rapply(object, f, classes = "ANY", deflt = NULL, how = c("unlist", "replace", "list"), ...)

参数列表:

  • object:list数据
  • f: 自定义的调用函数
  • classes : 匹配类型, ANY为所有类型
  • deflt: 非匹配类型的默认值
  • how: 3种操作方式,当为replace时,则用调用f后的结果替换原list中原来的元素;当为list时,新建一个list,类型匹配调用f函数,不匹配赋值为deflt;当为unlist时,会执行一次unlist(recursive = TRUE)的操作
  • …: 更多参数,可选

比如,对一个list的数据进行过滤,把所有数字型numeric的数据进行从小到大的排序。


> x=list(a=12,b=1:4,c=c('b','a'))
> y=pi
> z=data.frame(a=rnorm(10),b=1:10)
> a <- list(x=x,y=y,z=z)

# 进行排序,并替换原list的值
> rapply(a,sort, classes='numeric',how='replace')
$x
$x$a
[1] 12
$x$b
[1] 4 3 2 1
$x$c
[1] "b" "a"

$y
[1] 3.141593

$z
$z$a
 [1] -0.8356286 -0.8204684 -0.6264538 -0.3053884  0.1836433  0.3295078
 [7]  0.4874291  0.5757814  0.7383247  1.5952808
$z$b
 [1] 10  9  8  7  6  5  4  3  2  1

> class(a$z$b)
[1] "integer"

从结果发现,只有$z$a的数据进行了排序,检查$z$b的类型,发现是integer,是不等于numeric的,所以没有进行排序。

接下来,对字符串类型的数据进行操作,把所有的字符串型加一个字符串’++++’,非字符串类型数据设置为NA。


> rapply(a,function(x) paste(x,'++++'),classes="character",deflt=NA, how = "list")
$x
$x$a
[1] NA
$x$b
[1] NA
$x$c
[1] "b ++++" "a ++++"

$y
[1] NA

$z
$z$a
[1] NA
$z$b
[1] NA

只有$x$c为字符串向量,都合并了一个新字符串。那么,有了rapply就可以对list类型的数据进行方便的数据过滤了。

9. eapply函数

对一个环境空间中的所有变量进行遍历。如果我们有好的习惯,把自定义的变量都按一定的规则存储到自定义的环境空间中,那么这个函数将会让你的操作变得非常方便。当然,可能很多人都不熟悉空间的操作,那么请参考文章 揭开R语言中环境空间的神秘面纱解密R语言函数的环境空间

函数定义:

eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)

参数列表:

  • env: 环境空间
  • FUN: 自定义的调用函数
  • …: 更多参数,可选
  • all.names: 匹配类型, ANY为所有类型
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

下面我们定义一个环境空间,然后对环境空间的变量进行循环处理。


# 定义一个环境空间
> env


# 向这个环境空间中存入3个变量
> env$a <- 1:10
> env$beta <- exp(-3:3)
> env$logic <- c(TRUE, FALSE, FALSE, TRUE)
> env


# 查看env空间中的变量
> ls(env)
[1] "a"     "beta"  "logic"

# 查看env空间中的变量字符串结构
> ls.str(env)
a :  int [1:10] 1 2 3 4 5 6 7 8 9 10
beta :  num [1:7] 0.0498 0.1353 0.3679 1 2.7183 ...
logic :  logi [1:4] TRUE FALSE FALSE TRUE

计算env环境空间中所有变量的均值。


> eapply(env, mean)
$logic
[1] 0.5
$beta
[1] 4.535125
$a
[1] 5.5

再计算中当前环境空间中的所有变量的占用内存大小。


# 查看当前环境空间中的变量
> ls()
 [1] "a"     "df"     "env"    "x"     "y"    "z"    "X"  

# 查看所有变量的占用内存大小
> eapply(environment(), object.size)
$a
2056 bytes

$df
1576 bytes

$x
656 bytes

$y
48 bytes

$z
952 bytes

$X
1088 bytes

$env
56 bytes

eapply函数平时很难被用到,但对于R包开发来说,环境空间的使用是必须要掌握的。特别是当R要做为工业化的工具时,对变量的精确控制和管理是非常必要的。

本文全面地介绍了,R语言中的数据循环处理的apply函数族,基本已经可以应对所有的循环处理的情况了。同时,在apply一节中也比较了,3种数据处理方面的性能,R的内置向量计算,要优于apply循环,大幅优于for循环。那么我们在以后的R的开发和使用过程中,应该更多地把apply函数使用好。

忘掉程序员的思维,换成数据的思维,也许你就一下子开朗了。

转载请注明出处:
http://blog.fens.me/r-apply/

打赏作者

R语言高效的管道操作magrittr

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-magrittr/

magrittr

前言

使用R语言进行数据处理是非常方便的,几行代码就可以完成很复杂的操作。但是,对于数据的连续处理,还是有人觉得代码不好看,要么是长长的函数嵌套调用,有点像Lisp感觉,括号包一切;要么就是每次操作赋值一个临时变量,啰嗦。为什么就不能像Linux的管道一样优雅呢?

magrittr包在这样场景中被开发出来,通过管道的方式让连续复杂数据的处理操作,代码更短,更容易读,甚至一行代码可以搞定原来10行代码的事情。

目录

  1. magrittr介绍
  2. magrittr安装
  3. magrittr包的基本使用
  4. magrittr包的扩展功能

1. magrittr介绍

magrittr包被定义为一个高效的管道操作工具包,通过管道的连接方式,让数据或表达式的传递更高效,使用操作符%>%,可以直接把数据传递给下一个函数调用或表达式。magrittr包的主要目标有2个,第一是减少代码开发时间,提高代码的可读性和维护性;第二是让你的代码更短,再短,短短短…

magrittr包,主要定义了4个管道操作符,分另是%>%, %T>%, %$% 和 %<>%。其中,操作符%>%是最常用的,其他3个操作符,与%>%类似,在特殊的使用场景会起到更好的作用。当正确掌握这几个操作符后,你一定会爱不释手的,快去把所有的代码都重构吧,砍掉原来大段冗长的代码是一件多么令人激动的事情啊。

magrittr的项目主页:https://github.com/smbache/magrittr

2. magrittr安装

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

magrittr是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。


~ R
> install.packages('magrittr')
> library(magrittr)

3. magrittr包的使用

对于magrittr包的使用,其实就是掌握这4个操作符的用法,向右操作符%>%, 向左操作符%T>%, 解释操作符%$% 和 复合赋值操作符%<>%。

3.1 %>% 向右操作符(forward-pipe operator)

%>%是最常用的一个操作符,就是把左侧准备的数据或表达式,传递给右侧的函数调用或表达式进行运行,可以连续操作就像一个链条一样。

现实原理如下图所示,使用%>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集再向右侧传递给C函数,最后完成数据计算。

mag1

比如,我们要做下面的事情。(这是一个YY的需求。)

  1. 取10000个随机数符合,符合正态分布。
  2. 求这个10000个数的绝对值,同时乘以50。
  3. 把结果组成一个100*100列的方阵。
  4. 计算方阵中每行的均值,并四舍五入保留到整数。
  5. 把结果除以7求余数,并话出余数的直方图。

我们发现上面的5个过程是连续的,正常的代码我要怎么实现呢。


# 设置随机种子
> set.seed(1)

# 开始 
> n1<-rnorm(10000)            # 第1步
> n2<-abs(n1)*50              # 第2步
> n3<-matrix(n2,ncol = 100)   # 第3步
> n4<-round(rowMeans(n3))     # 第4步
> hist(n4%%7)                 # 第5步

输出的直方图:

01

上面的代码写法是,每一行实现一个条件,但中间多了不少的临时变量。再看另外一种的写法,括号包一切。


# 设置随机种子
> set.seed(1)
> hist(round(rowMeans(matrix(abs(rnorm(10000))*50,ncol=100)))%%7)

输出的直方图:

02

我分别用两种常见的代码风格,实现了我们的需求。再看看%>%的方式,有多么的不一样。


# 设置随机种子
> set.seed(1)

# 开始
> rnorm(10000) %>%
+   abs %>% `*` (50)  %>%
+   matrix(ncol=100)  %>%
+   rowMeans %>% round %>% 
+   `%%`(7) %>% hist

输出的直方图:

03

一行代码,不仅搞定所有的事情,而且结构清楚,可读性非常强。这就是管道代码风格,带来的优雅和简约。

3.2 %T>% 向左操作符(tee operator)

%T>%向左操作符,其实功能和 %>% 基本是一样的,只不过它是把左边的值做为传递的值,而不是右边的值。这种情况的使用场景也是很多的,比如,你在数据处理的中间过程,需要打印输出或图片输出,这时整个过程就会被中断,用向左操作符,就可以解决这样的问题。

现实原理如下图所示,使用%T>%把左侧的程序的数据集A传递右侧程序的B函数,,B函数的结果数据集不再向右侧传递,而是把B左侧的A数据集再次向右传递给C函数,最后完成数据计算。

mag2

我们把上面的需求稍微进行调整,在最后增加一个要求,就会用到向左操作符。

  1. 取10000个随机数符合,符合正态分布。
  2. 求这个10000个数的绝对值,同时乘以50。
  3. 把结果组成一个100*100列的方阵。
  4. 计算方阵中每行的均值,并四舍五入保留到整数。
  5. 把结果除以7求余数,并话出余数的直方图。
  6. 对余数求和

由于输出直方图后,返回值为空,那么再继续管道,就会把空值向右进行传递,这样计算最后一步时就会出错。这时我们需求的是,把除以7的余数向右传递给最后一步求和,那么就可以用到 %T>% 了

直接使用%>%向右传值,出现异常。


> set.seed(1)
> rnorm(10000) %>%
+   abs %>% `*` (50)  %>%
+   matrix(ncol=100)  %>%
+   rowMeans %>% round %>% 
+   `%%`(7) %>% hist %>% sum
Error in sum(.) : invalid 'type' (list) of argument

使用 %T>% 把左边的值,再向右传值,则结果正确。


> rnorm(10000) %>%
+   abs %>% `*` (50)  %>%
+   matrix(ncol=100)  %>%
+   rowMeans %>% round %>% 
+   `%%`(7) %T>% hist %>% sum
[1] 328

3.3 %$% 解释操作符(exposition pipe-operator)

%$% 的作用是把左侧数据的属性名传给右侧,让右侧的调用函数直接通过名字,就可以获取左侧的数据。比如,我们获得一个data.frame类型的数据集,通过使用 %$%,在右侧的函数中可以直接使用列名操作数据。

现实原理如下图所示,使用%$%把左侧的程序的数据集A传递右侧程序的B函数,同时传递数据集A的属性名,作为B函数的内部变量方便对A数据集进行处理,最后完成数据计算。

mag3

下面定义一个3列10行的data.frame,列名分别为x,y,z,或缺x列大于5的数据集。使用 %$% 把列名x直接传到右侧进行判断。这里.代表左侧的完整数据对象。一行代码就实现了需求,而且这里不需要显示的定义中间变量。


> set.seed(1)
> data.frame(x=1:10,y=rnorm(10),z=letters[1:10]) %$% .[which(x>5),]
    x          y z
6   6 -0.8204684 f
7   7  0.4874291 g
8   8  0.7383247 h
9   9  0.5757814 i
10 10 -0.3053884 j

如果不使用%$%,我们通常的代码写法为:


> set.seed(1)
> df<-data.frame(x=1:10,y=rnorm(10),z=letters[1:10])
> df[which(df$x>5),]
    x          y z
6   6 -0.8204684 f
7   7  0.4874291 g
8   8  0.7383247 h
9   9  0.5757814 i
10 10 -0.3053884 j

从代码中可以发现,通常的写法是需要定义变量df的,df一共要被显示的使用3次,就是这一点点的改进,会让代码看起来更干净。

3.4 %<>% 复合赋值操作符(compound assignment pipe-operator)

%<>%复合赋值操作符, 功能与 %>% 基本是一样的,对了一项额外的操作,就是把结果写到左侧对象。比如,我们需要对一个数据集进行排序,那么需要获得排序的结果,用%<>%就是非常方便的。

现实原理如下图所示,使用%<>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集再向右侧传递给C函数,C函数结果的数据集再重新赋值给A,完成整个过程。

mag4

定义一个符合正态分布的100个随机数,计算绝对值,并按从小到大的顺序排序,获得并取前10个数字赋值给x。


> set.seed(1)
> x<-rnorm(100) %<>% abs %>% sort %>% head(10)
> x
 [1] 0.001105352 0.016190263 0.028002159 0.039240003 0.044933609 0.053805041 0.056128740
 [8] 0.059313397 0.074341324 0.074564983

是不是太方便了,一行就实现了一连串的操作。但是这里同时有一个陷阱,需要注意一下 %<>% 必须要用在第一个管道的对象处,才能完成赋值的操作,如果不是左侧第一个位置,那么赋值将不起作用。


> set.seed(1)
> x<-rnorm(100)

# 左侧第一个位置,赋值成功
> x %<>% abs %>% sort %>% head(10)
> x
 [1] 0.001105352 0.016190263 0.028002159 0.039240003 0.044933609 0.053805041 0.056128740
 [8] 0.059313397 0.074341324 0.074564983

# 左侧第二个位置,结果被直接打印出来,但是x的值没有变
> x %>% abs %<>% sort %>% head(10)
 [1] 0.001105352 0.016190263 0.028002159 0.039240003 0.044933609 0.053805041 0.056128740
 [8] 0.059313397 0.074341324 0.074564983
> length(x)
[1] 10

# 左侧第三个位置,结果被直接打印出来,但是x的值没有变
> x %>% abs %>% sort %<>% head(10)
 [1] 0.001105352 0.016190263 0.028002159 0.039240003 0.044933609 0.053805041 0.056128740
 [8] 0.059313397 0.074341324 0.074564983
> length(x)
[1] 10

4. magrittr包的扩展功能

我们已经了解了magrittr包的4个操作符的使用,除了操作符,我们再看一下magrittr还有哪些功能。

  • 符号操作符定义
  • %>%对代码块的传递
  • %>%对函数的传递
  • 4.1 符号操作符定义

    为了让链条传递看起来更友好,magrittr对于常见的计算符号操作符进行的重新定义,让每个操作都对应用一个函数,这样所有的传递调用代码都是风格统一的。比如,add()函数和`+`是等价的。

    下面列出对应的列表:

    
    extract	                  `[`
    extract2	          `[[`
    inset	                  `[<-`
    inset2	                  `[[<-`
    use_series	          `$`
    add	                  `+`
    subtract	          `-`
    multiply_by	          `*`
    raise_to_power	          `^`
    multiply_by_matrix	  `%*%`
    divide_by	          `/`
    divide_by_int	          `%/%`
    mod	                  `%%`
    is_in	                  `%in%`
    and	                  `&`
    or	                  `|`
    equals	                  `==`
    is_greater_than	          `>`
    is_weakly_greater_than	  `>=`
    is_less_than	          `<`
    is_weakly_less_than	  `<=`
    not (`n'est pas`)	  `!`
    set_colnames	          `colnames<-`
    set_rownames	          `rownames<-`
    set_names	          `names<-`
    

    我们来看一下使用的效果。对一个包括10个随机数的向量的先*5再+5。

    
    # 使用符号的写法
    > set.seed(1)
    > rnorm(10) %>% `*`(5) %>% `+`(5)
     [1]  1.8677309  5.9182166  0.8218569 12.9764040  6.6475389  0.8976581  7.4371453  8.6916235
     [9]  7.8789068  3.4730581
    
    # 使用函数的写法
    > set.seed(1)
    > rnorm(10) %>% multiply_by(5) %>% add(5)
     [1]  1.8677309  5.9182166  0.8218569 12.9764040  6.6475389  0.8976581  7.4371453  8.6916235
     [9]  7.8789068  3.4730581
    

    上面计算结果是完全一样的,用函数替换了符号。其实,这种转换的操作在面向对象的封装时是非常有用的,像hibernate封装了所有的SQL,XFire封装了WebServices协议等。

    4.2 %>%传递到代码块

    有些时候,我们对同一个数据块的要进行次行的处理,一条语句是很难完成的,这些就需要一个代码块也进行处理。把数据集传递到{}代码块中,传入的数据集以.来表示,通过一段代码来完成操作,而不是一句话完成操作。

    比如,对一个包括10个随机数的向量的先*5再+5,求出向量的均值和标准差,并从小到大排序后返回前5条。

    
    > set.seed(1)
    > rnorm(10)    %>%
    +   multiply_by(5) %>%
    +   add(5)         %>%
    +   { 
    +     cat("Mean:", mean(.), 
    +         "Var:", var(.), "\n")
    +     sort(.) %>% head
    +   }
    Mean: 5.661014 Var: 15.23286 
    [1] 0.8218569 0.8976581 1.8677309 3.4730581 5.9182166 6.6475389
    

    通过{}包装的代码块,就可以很方便的完成多少处理的复杂操作。

    4.3 %>%传递到函数

    传递到函数和传递到代码块设计是类似的,是把一个数据集传给一个匿名函数,进行复杂的数据数据的操作。在这里,我们会显示的定义数据集的名字作为匿名函数的参数。

    比如,对鸢尾花数据集进行处理,只保留第一行和最后一行作为结果。

    
    > iris %>%
    +     (function(x) {
    +         if (nrow(x) > 2) 
    +             rbind(head(x, 1), tail(x, 1))
    +         else x
    +     })
        Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
    1            5.1         3.5          1.4         0.2    setosa
    150          5.9         3.0          5.1         1.8 virginica
    

    这里x就是iris数据集,作为了函数的显示参数,被应用于后续的数据处理过程。

    通过对magrittr的学习,我们掌握了一些特殊的R语言代码的编程技巧,用magrittr包写出的R语言程序,与传统的R语言代码是有区别,可以你的程序很简单、很高效。

    天性“懒惰”的程序员总是会想各种办法,来减少自己的代码,让代码变得优雅,同时还能让程序更可靠。什么时候能把代码写得越来越少,那么你就越来越接近高手!

    转载请注明出处:
    http://blog.fens.me/r-magrittr/

    打赏作者

R语言字符串处理包stringr

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-stringr/

stringr

前言

用R语言处理字符串,总觉得很麻烦,即不能用向量的方法进行分割,也不能用循环遍历索引。grep()家族函数常常记不住,paste()函数默认以空格分割,各种不顺手啊!随着使用R语言的场景越来越多,字符串处理是必不可少的。给大家推荐一个由 Hadley Wickham 开发的一个灵活的字符串处理包stringr。

目录

  1. stringr介绍
  2. stringr安装
  3. stringr的API介绍

1. stringr介绍

stringr包被定义为一致的、简单易用的字符串工具集。所有的函数和参数定义都具有一致性,比如,用相同的方法进行NA处理和0长度的向量处理。

字符串处理虽然不是R语言中最主要的功能,却也是必不可少的,数据清洗、可视化等的操作都会用到。对于R语言本身的base包提供的字符串基础函数,随着时间的积累,已经变得很多地方不一致,不规范的命名,不标准的参数定义,很难看一眼就上手使用。字符串处理在其他语言中都是非常方便的事情,R语言在这方面确实落后了。stringr包就是为了解决这个问题,让字符串处理变得简单易用,提供友好的字符串操作接口。

stringr的项目主页:https://cran.r-project.org/web/packages/stringr/index.html

2. stringr安装

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

stringr是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。


~ R
> install.packages('stringr')
> library(stringr)

3. stringr的API介绍

stringr包1.0.0版本,一共提供了30个函数,方便我们对字符串处理。常用的字符串的处理以str_开头来命名,方便更直观理解函数的定义。我们可以根据使用习惯对函数进行分类:

字符串拼接函数

  • str_c: 字符串拼接。
  • str_join: 字符串拼接,同str_c。
  • str_trim: 去掉字符串的空格和TAB(\t)
  • str_pad: 补充字符串的长度
  • str_dup: 复制字符串
  • str_wrap: 控制字符串输出格式
  • str_sub: 截取字符串
  • str_sub<- 截取字符串,并赋值,同str_sub

字符串计算函数

  • str_count: 字符串计数
  • str_length: 字符串长度
  • str_sort: 字符串值排序
  • str_order: 字符串索引排序,规则同str_sort

字符串匹配函数

  • str_split: 字符串分割
  • str_split_fixed: 字符串分割,同str_split
  • str_subset: 返回匹配的字符串
  • word: 从文本中提取单词
  • str_detect: 检查匹配字符串的字符
  • str_match: 从字符串中提取匹配组。
  • str_match_all: 从字符串中提取匹配组,同str_match
  • str_replace: 字符串替换
  • str_replace_all: 字符串替换,同str_replace
  • str_replace_na:把NA替换为NA字符串
  • str_locate: 找到匹配的字符串的位置。
  • str_locate_all: 找到匹配的字符串的位置,同str_locate
  • str_extract: 从字符串中提取匹配字符
  • str_extract_all: 从字符串中提取匹配字符,同str_extract

字符串变换函数

  • str_conv: 字符编码转换
  • str_to_upper: 字符串转成大写
  • str_to_lower: 字符串转成小写,规则同str_to_upper
  • str_to_title: 字符串转成首字母大写,规则同str_to_upper

参数控制函数,仅用于构造功能的参数,不能独立使用。

  • boundary: 定义使用边界
  • coll: 定义字符串标准排序规则。
  • fixed: 定义用于匹配的字符,包括正则表达式中的转义符
  • regex: 定义正则表达式

3.1 字符串拼接函数

3.1.1 str_c,字符串拼接操作,与str_join完全相同,与paste()行为不完全一致。

函数定义:


str_c(..., sep = "", collapse = NULL)
str_join(..., sep = "", collapse = NULL)

参数列表:

  • …: 多参数的输入
  • sep: 把多个字符串拼接为一个大的字符串,用于字符串的分割符。
  • collapse: 把多个向量参数拼接为一个大的字符串,用于字符串的分割符。

把多个字符串拼接为一个大的字符串。


> str_c('a','b')
[1] "ab"
> str_c('a','b',sep='-')
[1] "a-b"
> str_c(c('a','a1'),c('b','b1'),sep='-')
[1] "a-b"   "a1-b1"

把多个向量参数拼接为一个大的字符串。


> str_c(head(letters), collapse = "")
[1] "abcdef"
> str_c(head(letters), collapse = ", ")
[1] "a, b, c, d, e, f"

# collapse参数,对多个字符串无效
> str_c('a','b',collapse = "-")   
[1] "ab"
> str_c(c('a','a1'),c('b','b1'),collapse='-')
[1] "ab-a1b1"

拼接有NA值的字符串向量时,NA还是NA


> str_c(c("a", NA, "b"), "-d")
[1] "a-d" NA    "b-d"

对比str_c()函数和paste()函数之间的不同点。


# 多字符串拼接,默认的sep参数行为不一致
> str_c('a','b')
[1] "ab"
> paste('a','b')
[1] "a b"

# 向量拼接字符串,collapse参数的行为一致
> str_c(head(letters), collapse = "")
[1] "abcdef"
> paste(head(letters), collapse = "")
[1] "abcdef"
 
#拼接有NA值的字符串向量,对NA的处理行为不一致
> str_c(c("a", NA, "b"), "-d")
[1] "a-d" NA    "b-d"
> paste(c("a", NA, "b"), "-d")
[1] "a -d"  "NA -d" "b -d" 

3.1.2 str_trim:去掉字符串的空格和TAB(\t)

函数定义:

str_trim(string, side = c("both", "left", "right"))

参数列表:

  • string: 字符串,字符串向量。
  • side: 过滤方式,both两边都过滤,left左边过滤,right右边过滤

去掉字符串的空格和TAB(\t)


#只过滤左边的空格
> str_trim("  left space\t\n",side='left') 
[1] "left space\t\n"

#只过滤右边的空格
> str_trim("  left space\t\n",side='right')
[1] "  left space"

#过滤两边的空格
> str_trim("  left space\t\n",side='both')
[1] "left space"

#过滤两边的空格
> str_trim("\nno space\n\t")
[1] "no space"

3.1.3 str_pad:补充字符串的长度

函数定义:

str_pad(string, width, side = c("left", "right", "both"), pad = " ")

参数列表:

  • string: 字符串,字符串向量。
  • width: 字符串填充后的长度
  • side: 填充方向,both两边都填充,left左边填充,right右边填充
  • pad: 用于填充的字符

补充字符串的长度。


# 从左边补充空格,直到字符串长度为20
> str_pad("conan", 20, "left")
[1] "               conan"

# 从右边补充空格,直到字符串长度为20
> str_pad("conan", 20, "right")
[1] "conan               "

# 从左右两边各补充空格,直到字符串长度为20
> str_pad("conan", 20, "both")
[1] "       conan        "

# 从左右两边各补充x字符,直到字符串长度为20
> str_pad("conan", 20, "both",'x')
[1] "xxxxxxxconanxxxxxxxx"

3.1.4 str_dup: 复制字符串

函数定义:

str_dup(string, times)

参数列表:

  • string: 字符串,字符串向量。
  • times: 复制数量

复制一个字符串向量。


> val <- c("abca4", 123, "cba2")

# 复制2次
> str_dup(val, 2)
[1] "abca4abca4" "123123"     "cba2cba2"  

# 按位置复制
> str_dup(val, 1:3)
[1] "abca4"        "123123"       "cba2cba2cba2"

3.1.5 str_wrap,控制字符串输出格式

函数定义:

str_wrap(string, width = 80, indent = 0, exdent = 0)

参数列表:

  • string: 字符串,字符串向量。
  • width: 设置一行所占的宽度。
  • indent: 段落首行的缩进值
  • exdent: 段落非首行的缩进值

 txt<-'R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。'

# 设置宽度为40个字符
> cat(str_wrap(txt, width = 40), "\n")
R语言作为统计学一门语言,一直在小众领域
闪耀着光芒。直到大数据的爆发,R语言变成
了一门炙手可热的数据分析的利器。随着越来
越多的工程背景的人的加入,R语言的社区在
迅速扩大成长。现在已不仅仅是统计领域,教
育,银行,电商,互联网….都在使用R语言。 

# 设置宽度为60字符,首行缩进2字符
> cat(str_wrap(txt, width = 60, indent = 2), "\n")
  R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数
据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来
越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已
不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。 

# 设置宽度为10字符,非首行缩进4字符
> cat(str_wrap(txt, width = 10, exdent = 4), "\n")
R语言作为
    统计学一
    门语言,
    一直在小
    众领域闪
    耀着光芒。
    直到大数据
    的爆发,R
    语言变成了
    一门炙手可
    热的数据分
    析的利器。
    随着越来
    越多的工程
    背景的人的
    加入,R语
    言的社区在
    迅速扩大成
    长。现在已
    不仅仅是统
    计领域,教
    育,银行,
    电商,互联
    网….都在使
    用R语言。 

3.1.6 str_sub,截取字符串

函数定义:

str_sub(string, start = 1L, end = -1L)

参数列表:

  • string: 字符串,字符串向量。
  • start : 开始位置
  • end : 结束位置

截取字符串。


> txt <- "I am Conan."

# 截取1-4的索引位置的字符串
> str_sub(txt, 1, 4)
[1] "I am"

# 截取1-6的索引位置的字符串
> str_sub(txt, end=6)
[1] "I am C"

# 截取6到结束的索引位置的字符串
> str_sub(txt, 6)
[1] "Conan."

# 分2段截取字符串
> str_sub(txt, c(1, 4), c(6, 8))
[1] "I am C" "m Con" 

# 通过负坐标截取字符串
> str_sub(txt, -3)
[1] "an."
> str_sub(txt, end = -3)
[1] "I am Cona"

对截取的字符串进行赋值。


> x <- "AAABBBCCC"

# 在字符串的1的位置赋值为1
> str_sub(x, 1, 1) <- 1; x
[1] "1AABBBCCC"

# 在字符串从2到-2的位置赋值为2345
> str_sub(x, 2, -2) <- "2345"; x
[1] "12345C"

3.2 字符串计算函数

3.2.1 str_count, 字符串计数

函数定义:

str_count(string, pattern = "")

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配的字符。

对字符串中匹配的字符计数


> str_count('aaa444sssddd', "a")
[1] 3

对字符串向量中匹配的字符计数


> fruit <- c("apple", "banana", "pear", "pineapple")
> str_count(fruit, "a")
[1] 1 3 1 1
> str_count(fruit, "p")
[1] 2 0 1 3

对字符串中的'.'字符计数,由于.是正则表达式的匹配符,直接判断计数的结果是不对的。


> str_count(c("a.", ".", ".a.",NA), ".")
[1]  2  1  3 NA

# 用fixed匹配字符
> str_count(c("a.", ".", ".a.",NA), fixed("."))
[1]  1  1  2 NA

# 用\\匹配字符
> str_count(c("a.", ".", ".a.",NA), "\\.")
[1]  1  1  2 NA

3.2.2 str_length,字符串长度

函数定义:

str_length(string)

参数列表:

  • string: 字符串,字符串向量。

计算字符串的长度:


> str_length(c("I", "am", "张丹", NA))
[1]  1  2  2 NA

3.2.3 str_sort, 字符串值排序,同str_order索引排序

函数定义:


str_sort(x, decreasing = FALSE, na_last = TRUE, locale = "", ...)
str_order(x, decreasing = FALSE, na_last = TRUE, locale = "", ...)

参数列表:

  • x: 字符串,字符串向量。
  • decreasing: 排序方向。
  • na_last:NA值的存放位置,一共3个值,TRUE放到最后,FALSE放到最前,NA过滤处理
  • locale:按哪种语言习惯排序

对字符串值进行排序。


# 按ASCII字母排序
> str_sort(c('a',1,2,'11'), locale = "en")  
[1] "1"  "11" "2"  "a" 

# 倒序排序
> str_sort(letters,decreasing=TRUE)         
 [1] "z" "y" "x" "w" "v" "u" "t" "s" "r" "q" "p" "o" "n" "m" "l" "k" "j" "i" "h"
[20] "g" "f" "e" "d" "c" "b" "a"

# 按拼音排序
> str_sort(c('你','好','粉','丝','日','志'),locale = "zh")  
[1] "粉" "好" "你" "日" "丝" "志"

对NA值的排序处理


 #把NA放最后面
> str_sort(c(NA,'1',NA),na_last=TRUE) 
[1] "1" NA  NA
 
#把NA放最前面
> str_sort(c(NA,'1',NA),na_last=FALSE) 
[1] NA  NA  "1"

#去掉NA值 
> str_sort(c(NA,'1',NA),na_last=NA)    
[1] "1"

3.3 字符串匹配函数

3.3.1 str_split,字符串分割,同str_split_fixed

函数定义:


str_split(string, pattern, n = Inf)
str_split_fixed(string, pattern, n)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配的字符。
  • n: 分割个数

对字符串进行分割。


> val <- "abc,123,234,iuuu"

# 以,进行分割
> s1<-str_split(val, ",");s1
[[1]]
[1] "abc"  "123"  "234"  "iuuu"

# 以,进行分割,保留2块
> s2<-str_split(val, ",",2);s2
[[1]]
[1] "abc"          "123,234,iuuu"

# 查看str_split()函数操作的结果类型list
> class(s1)
[1] "list"

# 用str_split_fixed()函数分割,结果类型是matrix
> s3<-str_split_fixed(val, ",",2);s3
     [,1]  [,2]          
[1,] "abc" "123,234,iuuu"

> class(s3)
[1] "matrix"

3.3.2 str_subset:返回的匹配字符串

函数定义:

str_subset(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配的字符。

> val <- c("abc", 123, "cba")

# 全文匹配
> str_subset(val, "a")
[1] "abc" "cba"

# 开头匹配
> str_subset(val, "^a")
[1] "abc"

# 结尾匹配
> str_subset(val, "a$")
[1] "cba"

3.3.3 word, 从文本中提取单词

函数定义:

word(string, start = 1L, end = start, sep = fixed(" "))

参数列表:

  • string: 字符串,字符串向量。
  • start: 开始位置。
  • end: 结束位置。
  • sep: 匹配字符。

> val <- c("I am Conan.", "http://fens.me, ok")

# 默认以空格分割,取第一个位置的字符串
> word(val, 1)
[1] "I"               "http://fens.me,"
> word(val, -1)
[1] "Conan." "ok"    
> word(val, 2, -1)
[1] "am Conan." "ok"       

# 以,分割,取第一个位置的字符串 
> val<-'111,222,333,444'
> word(val, 1, sep = fixed(','))
[1] "111"
> word(val, 3, sep = fixed(','))
[1] "333"

3.3.4 str_detect匹配字符串的字符

函数定义:

str_detect(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。

> val <- c("abca4", 123, "cba2")

# 检查字符串向量,是否包括a
> str_detect(val, "a")
[1]  TRUE FALSE  TRUE

# 检查字符串向量,是否以a为开头
> str_detect(val, "^a")
[1]  TRUE FALSE FALSE

# 检查字符串向量,是否以a为结尾
> str_detect(val, "a$")
[1] FALSE FALSE FALSE

3.3.6 str_match,从字符串中提取匹配组

函数定义:


str_match(string, pattern)
str_match_all(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。

从字符串中提取匹配组


> val <- c("abc", 123, "cba")

# 匹配字符a,并返回对应的字符
> str_match(val, "a")
     [,1]
[1,] "a" 
[2,] NA  
[3,] "a" 

# 匹配字符0-9,限1个,并返回对应的字符
> str_match(val, "[0-9]")
     [,1]
[1,] NA  
[2,] "1" 
[3,] NA  

# 匹配字符0-9,不限数量,并返回对应的字符
> str_match(val, "[0-9]*")
     [,1] 
[1,] ""   
[2,] "123"
[3,] ""  

从字符串中提取匹配组,以字符串matrix格式返回


> str_match_all(val, "a")
[[1]]
     [,1]
[1,] "a" 

[[2]]
     [,1]

[[3]]
     [,1]
[1,] "a" 

> str_match_all(val, "[0-9]")
[[1]]
     [,1]

[[2]]
     [,1]
[1,] "1" 
[2,] "2" 
[3,] "3" 

[[3]]
     [,1]

3.3.7 str_replace,字符串替换

函数定义:

str_replace(string, pattern, replacement)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。
  • replacement: 用于替换的字符。

> val <- c("abc", 123, "cba")

# 把目标字符串第一个出现的a或b,替换为-
> str_replace(val, "[ab]", "-")
[1] "-bc" "123" "c-a"

# 把目标字符串所有出现的a或b,替换为-
> str_replace_all(val, "[ab]", "-")
[1] "--c" "123" "c--"

# 把目标字符串所有出现的a,替换为被转义的字符
> str_replace_all(val, "[a]", "\1\1")
[1] "\001\001bc" "123"        "cb\001\001"

3.3.8 str_replace_na把NA替换为NA字符串

函数定义:

str_replace_na(string, replacement = "NA")

参数列表:

  • string: 字符串,字符串向量。
  • replacement : 用于替换的字符。

把NA替换为字符串


> str_replace_na(c(NA,'NA',"abc"),'x')
[1] "x"   "NA"  "abc"

3.3.9 str_locate,找到的模式在字符串中的位置。

函数定义:

str_locate(string, pattern)
str_locate_all(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。

> val <- c("abca", 123, "cba")

# 匹配a在字符串中的位置
> str_locate(val, "a")
     start end
[1,]     1   1
[2,]    NA  NA
[3,]     3   3

# 用向量匹配
> str_locate(val, c("a", 12, "b"))
     start end
[1,]     1   1
[2,]     1   2
[3,]     2   2

# 以字符串matrix格式返回
> str_locate_all(val, "a")
[[1]]
     start end
[1,]     1   1
[2,]     4   4

[[2]]
     start end

[[3]]
     start end
[1,]     3   3

# 匹配a或b字符,以字符串matrix格式返回
> str_locate_all(val, "[ab]")
[[1]]
     start end
[1,]     1   1
[2,]     2   2
[3,]     4   4

[[2]]
     start end

[[3]]
     start end
[1,]     2   2
[2,]     3   3

3.3.10 str_extract从字符串中提取匹配模式

函数定义:

str_extract(string, pattern)
str_extract_all(string, pattern, simplify = FALSE)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。
  • simplify: 返回值,TRUE返回matrix,FALSE返回字符串向量

> val <- c("abca4", 123, "cba2")

# 返回匹配的数字
> str_extract(val, "\\d")
[1] "4" "1" "2"

# 返回匹配的字符
> str_extract(val, "[a-z]+")
[1] "abca" NA     "cba" 


> val <- c("abca4", 123, "cba2")
> str_extract_all(val, "\\d")
[[1]]
[1] "4"

[[2]]
[1] "1" "2" "3"

[[3]]
[1] "2"

> str_extract_all(val, "[a-z]+")
[[1]]
[1] "abca"

[[2]]
character(0)

[[3]]
[1] "cba"

3.4 字符串变换函数

3.4.1 str_conv:字符编码转换

函数定义:

str_conv(string, encoding)

参数列表:

  • string: 字符串,字符串向量。
  • encoding: 编码名。

对中文进行转码处理。


# 把中文字符字节化
> x <- charToRaw('你好');x
[1] c4 e3 ba c3

# 默认win系统字符集为GBK,GB2312为GBK字集,转码正常
> str_conv(x, "GBK")
[1] "你好"
> str_conv(x, "GB2312")
[1] "你好"

# 转UTF-8失败
> str_conv(x, "UTF-8")
[1] "���"
Warning messages:
1: In stri_conv(string, encoding, "UTF-8") :
  input data \xffffffc4 in current source encoding could not be converted to Unicode
2: In stri_conv(string, encoding, "UTF-8") :
  input data \xffffffe3\xffffffba in current source encoding could not be converted to Unicode
3: In stri_conv(string, encoding, "UTF-8") :
  input data \xffffffc3 in current source encoding could not be converted to Unicode

把unicode转UTF-8


> x1 <- "\u5317\u4eac"
> str_conv(x1, "UTF-8")
[1] "北京"

3.4.2 str_to_upper,字符串大写转换。

函数定义:


str_to_upper(string, locale = "")
str_to_lower(string, locale = "")
str_to_title(string, locale = "")

参数列表:

  • string: 字符串。
  • locale:按哪种语言习惯排序

字符串大写转换:


> val <- "I am conan. Welcome to my blog! http://fens.me"

# 全大写
> str_to_upper(val)
[1] "I AM CONAN. WELCOME TO MY BLOG! HTTP://FENS.ME"

# 全小写
> str_to_lower(val)
[1] "i am conan. welcome to my blog! http://fens.me"

# 首字母大写
> str_to_title(val)
[1] "I Am Conan. Welcome To My Blog! Http://Fens.Me"

字符串在平常的数据处理中经常用过,需要对字符串进行分割、连接、转换等操作,本篇中通过介绍stringr,灵活的字符串处理库,可以有效地提高代码的编写效率。有了好的工具,在用R语言处理字符串就顺手了。

转载请注明出处:
http://blog.fens.me/r-stringr/

打赏作者