• 粉丝日志首页

常用连续型分布介绍及R语言实现

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-density/

r-density

前言

随机变量在我们的生活中处处可见,如每日天气,股价涨跌,彩票中奖等,这些事情都是事前不可预言其结果的,就算在相同的条件下重复进行试验,其结果未必相同。数学家们总结了这种规律,用概率分布来描述随机变量取值。

就算股价不能预测,但如果我们知道它的概率分布,那么有90%的可能我们可以猜出答案。

目录

  1. 正态分布
  2. 指数分步
  3. γ(伽玛)分布
  4. weibull分布
  5. F分布
  6. T分布
  7. β(贝塔)分布
  8. χ²(卡方)分布
  9. 均匀分布

1. 正态分布

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。

1). 概率密度函数

norm-distribution


set.seed(1)
x <- seq(-5,5,length.out=100)
y <- dnorm(x,0,1)
  
plot(x,y,col="red",xlim=c(-5,5),ylim=c(0,1),type='l',
     xaxs="i", yaxs="i",ylab='density',xlab='',
     main="The Normal Density Distribution")

lines(x,dnorm(x,0,0.5),col="green")
lines(x,dnorm(x,0,2),col="blue")
lines(x,dnorm(x,-2,1),col="orange")

legend("topright",legend=paste("m=",c(0,0,0,-2)," sd=", c(1,0.5,2,1)), lwd=1, col=c("red", "green","blue","orange"))

norm

2). 累积分布函数

norm-distribution-cum


set.seed(1)
x <- seq(-5,5,length.out=100)
y <- pnorm(x,0,1)

plot(x,y,col="red",xlim=c(-5,5),ylim=c(0,1),type='l',
     xaxs="i", yaxs="i",ylab='density',xlab='',
     main="The Normal Cumulative Distribution")

lines(x,pnorm(x,0,0.5),col="green")
lines(x,pnorm(x,0,2),col="blue")
lines(x,pnorm(x,-2,1),col="orange")

legend("bottomright",legend=paste("m=",c(0,0,0,-2)," sd=", c(1,0.5,2,1)), lwd=1,col=c("red", "green","blue","orange"))

norm2

3). 分布检验

Shapiro-Wilk正态分布检验: 用来检验是否数据符合正态分布,类似于线性回归的方法一样,是检验其于回归曲线的残差。该方法推荐在样本量很小的时候使用,样本在3到5000之间。

该检验原假设为H0:数据集符合正态分布,统计量W为:

shapiro-wilk-test

  • 统计量W 最大值是1,越接近1,表示样本与正态分布匹配
  • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
  • R语言程序

    
    > set.seed(1)
    > S<-rnorm(1000)
    > shapiro.test(S)
    	Shapiro-Wilk normality test
    data:  S
    W = 0.9988, p-value = 0.7256
    

    结论: W接近1,p-value>0.05,不能拒绝原假设,所以数据集S符合正态分布!

    Kolmogorov-Smirnov连续分布检验:检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合正态分布,H1:样本所来自的总体分布不符合正态分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近正态分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rnorm(1000)
    > ks.test(S, "pnorm")
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0211, p-value = 0.7673
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合正态分布!

    2. 指数分布

    指数分布(Exponential distribution)用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

    许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和weibull分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。

    指数分布可以看作当weibull分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。

    1). 概率密度函数

    Exponential-distribution

    其中λ > 0是分布的一个参数,常被称为率参数(rate parameter)。即每单位时间发生该事件的次数。指数分布的区间是[0,∞)。 如果一个随机变量X 呈指数分布,则可以写作:X ~ Exponential(λ)。

    
    set.seed(1)
    x<-seq(-1,2,length.out=100)
    y<-dexp(x,0.5)
    
    plot(x,y,col="red",xlim=c(0,2),ylim=c(0,5),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Exponential Density Distribution")
    lines(x,dexp(x,1),col="green")
    lines(x,dexp(x,2),col="blue")
    lines(x,dexp(x,5),col="orange")
    
    legend("topright",legend=paste("rate=",c(.5, 1, 2,5)), lwd=1,col=c("red", "green","blue","orange"))
    

    exp

    2). 累积分布函数

    Exponential-distribution-cum

    
    set.seed(1)
    x<-seq(-1,2,length.out=100)
    y<-pexp(x,0.5)
    
    plot(x,y,col="red",xlim=c(0,2),ylim=c(0,1),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Exponential Cumulative Distribution Function")
    lines(x,pexp(x,1),col="green")
    lines(x,pexp(x,2),col="blue")
    lines(x,pexp(x,5),col="orange")
    
    legend("bottomright",legend=paste("rate=",c(.5, 1, 2,5)), lwd=1, col=c("red", "green","blue","orange"))
    

    exp2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验:检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合指数分布,H1:样本所来自的总体分布不符合指数分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近指数分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rexp(1000)
    > ks.test(S, "pexp")
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0387, p-value = 0.1001
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合指数分布!

    3. γ(伽玛)分布

    伽玛分布(Gamma)是著名的皮尔逊概率分布函数簇中的重要一员,称为皮尔逊Ⅲ型分布。它的曲线有一个峰,但左右不对称。

    伽玛分布中的参数α,称为形状参数,β称为尺度参数。

    gamma0

    伽玛函数为:

    gamma-fo

    伽玛函数是阶乘在实数上的泛化。

    1). 概率密度函数

    gamma

    
    set.seed(1)
    x<-seq(0,10,length.out=100)
    y<-dgamma(x,1,2)
    
    plot(x,y,col="red",xlim=c(0,10),ylim=c(0,2),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Gamma Density Distribution")
    
    lines(x,dgamma(x,2,2),col="green")
    lines(x,dgamma(x,3,2),col="blue")
    lines(x,dgamma(x,5,1),col="orange")
    lines(x,dgamma(x,9,1),col="black")
    
    legend("topright",legend=paste("shape=",c(1,2,3,5,9)," rate=", c(2,2,2,1,1)), lwd=1, col=c("red", "green","blue","orange","black"))
    

    gamma

    2). 累积分布函数

    gamma2

    
    set.seed(1)
    x<-seq(0,10,length.out=100)
    y<-pgamma(x,1,2)
    
    plot(x,y,col="red",xlim=c(0,10),ylim=c(0,1),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Gamma Cumulative Distribution Function")
    
    lines(x,pgamma(x,2,2),col="green")
    lines(x,pgamma(x,3,2),col="blue")
    lines(x,pgamma(x,5,1),col="orange")
    lines(x,pgamma(x,9,1),col="black")
    
    legend("bottomright",legend=paste("shape=",c(1,2,3,5,9)," rate=", c(2,2,2,1,1)), lwd=1, col=c("red", "green","blue","orange","black"))
    

    gamma2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合伽玛分布,H1:样本所来自的总体分布不符合伽玛分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近伽玛分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rgamma(1000,1)
    > ks.test(S, "pgamma", 1)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0363, p-value = 0.1438
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合shape=1伽玛分布!

    检验失败:

    
    > ks.test(S, "pgamma", 2)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.3801, p-value < 2.2e-16
    alternative hypothesis: two-sided
    

    结论:D值不够小, p-value<0.05,拒绝原假设,所以数据集S符合shape=2伽玛分布!

    4. weibull分布

    weibull(韦伯)分布,又称韦氏分布或威布尔分布,是可靠性分析和寿命检验的理论基础。Weibull分布能被应用于很多形式,分布由形状、尺度(范围)和位置三个参数决定。其中形状参数是最重要的参数,决定分布密度曲线的基本形状,尺度参数起放大或缩小曲线的作用,但不影响分布的形状。

    Weibull分布通常用在故障分析领域( field of failure analysis)中;尤其是它可以模拟(mimic) 故障率(failture rate)持续( over time)变化的分布。故障率为:

    • 一直为常量(constant over time), 那么 α = 1, 暗示在随机事件中发生
    • 一直减少(decreases over time),那么α < 1, 暗示"早期失效(infant mortality)"
    • 一直增加(increases over time),那么α > 1, 暗示"耗尽(wear out)" - 随着时间的推进,失败的可能性变大

    1). 概率密度函数

    weibull

    
    set.seed(1)
    x<- seq(0, 2.5, length.out=1000)
    y<- dweibull(x, 0.5)
    
    plot(x, y, type="l", col="blue",xlim=c(0, 2.5),ylim=c(0, 6),
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Weibull Density Distribution")
    
    lines(x, dweibull(x, 1), type="l", col="red")
    lines(x, dweibull(x, 1.5), type="l", col="magenta")
    lines(x, dweibull(x, 5), type="l", col="green")
    lines(x, dweibull(x, 15), type="l", col="purple")
    legend("topright", legend=paste("shape =", c(.5, 1, 1.5, 5, 15)), lwd=1,col=c("blue", "red", "magenta", "green","purple"))
    

    weibull

    2). 累积分布函数

    weibull2

    
    set.seed(1)
    x<- seq(0, 2.5, length.out=1000)
    y<- pweibull(x, 0.5)
    
    plot(x, y, type="l", col="blue",xlim=c(0, 2.5),ylim=c(0, 1.2),
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Weibull Cumulative Distribution Function")
    
    lines(x, pweibull(x, 1), type="l", col="red")
    lines(x, pweibull(x, 1.5), type="l", col="magenta")
    lines(x, pweibull(x, 5), type="l", col="green")
    lines(x, pweibull(x, 15), type="l", col="purple")
    legend("bottomright", legend=paste("shape =", c(.5, 1, 1.5, 5, 15)), lwd=1, col=c("blue", "red", "magenta", "green","purple"))
    

    weibull2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合weibull分布,H1:样本所来自的总体分布不符合weibull分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近weibull分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rweibull(1000,1)
    > ks.test(S, "pweibull",1)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0244, p-value = 0.5928
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合shape=1的weibull分布!

    5. F分布

    F-分布(F-distribution)是一种连续概率分布,被广泛应用于似然比率检验,特别是ANOVA中。F分布定义为:设X、Y为两个独立的随机变量,X服从自由度为k1的卡方分布,Y服从自由度为k2的卡方分布,这2 个独立的卡方分布被各自的自由度除以后的比率这一统计量的分布。即: 上式F服从第一自由度为k1,第二自由度为k2的F分布。

    F分布的性质

    • 它是一种非对称分布
    • 它有两个自由度,即n1 -1和n2-1,相应的分布记为F( n1 –1, n2-1), n1 –1通常称为分子自由度, n2-1通常称为分母自由度
    • F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状
    • F分布的倒数性质:Fα,df1,df2=1/F1-α,df1,df2[1]

    1). 概率密度函数

    f

    B是Beta函数(beta function)

    
    set.seed(1)
    x<-seq(0,5,length.out=1000)
    y<-df(x,1,1,0)
    
    plot(x,y,col="red",xlim=c(0,5),ylim=c(0,1),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The F Density Distribution")
    
    lines(x,df(x,1,1,2),col="green")
    lines(x,df(x,2,2,2),col="blue")
    lines(x,df(x,2,4,4),col="orange")
    
    legend("topright",legend=paste("df1=",c(1,1,2,2),"df2=",c(1,1,2,4)," ncp=", c(0,2,2,4)), lwd=1, col=c("red", "green","blue","orange"))
    

    f

    2). 累积分布函数

    f2

    I是不完全Beta函数

    
    set.seed(1)
    x<-seq(0,5,length.out=1000)
    y<-df(x,1,1,0)
    
    plot(x,y,col="red",xlim=c(0,5),ylim=c(0,1),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The F Cumulative Distribution Function")
    
    lines(x,pf(x,1,1,2),col="green")
    lines(x,pf(x,2,2,2),col="blue")
    lines(x,pf(x,2,4,4),col="orange")
    
    legend("topright",legend=paste("df1=",c(1,1,2,2),"df2=",c(1,1,2,4)," ncp=", c(0,2,2,4)), lwd=1, col=c("red", "green","blue","orange"))
    

    f2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合F分布,H1:样本所来自的总体分布不符合F分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近F分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rf(1000,1,1,2)
    > ks.test(S, "pf", 1,1,2)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0113, p-value = 0.9996
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合df1=1, df2=1, ncp=2的F分布!

    6. T分布

    学生t-分布(Student's t-distribution),可简称为t分布。应用在估计呈正态分布的母群体之平均数。它是对两个样本均值差异进行显著性测试的学生t检定的基础。学生t检定改进了Z检定(Z-test),因为Z检定以母体标准差已知为前提。虽然在样本数量大(超过30个)时,可以应用Z检定来求得近似值,但Z检定用在小样本会产生很大的误差,因此必须改用学生t检定以求准确。

    在母体标准差未知的情况下,不论样本数量大或小皆可应用学生t检定。在待比较的数据有三组以上时,因为误差无法压低,此时可以用变异数分析(ANOVA)代替学生t检定。

    1). 概率密度函数

    t

    v 等于n − 1。 T的分布称为t-分布。参数\nu 一般被称为自由度。
    γ 是伽玛函数。

    
    set.seed(1)
    x<-seq(-5,5,length.out=1000)
    y<-dt(x,1,0)
    
    plot(x,y,col="red",xlim=c(-5,5),ylim=c(0,0.5),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The T Density Distribution")
    
    lines(x,dt(x,5,0),col="green")
    lines(x,dt(x,5,2),col="blue")
    lines(x,dt(x,50,4),col="orange")
    
    legend("topleft",legend=paste("df=",c(1,5,5,50)," ncp=", c(0,0,2,4)), lwd=1, col=c("red", "green","blue","orange"))
    

    t

    2). 累积分布函数

    t2

    v 等于n − 1。 T的分布称为t-分布。参数\nu 一般被称为自由度。
    γ 是伽玛函数。

    
    set.seed(1)
    x<-seq(-5,5,length.out=1000)
    y<-pt(x,1,0)
    
    plot(x,y,col="red",xlim=c(-5,5),ylim=c(0,0.5),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The T Cumulative Distribution Function")
    
    lines(x,pt(x,5,0),col="green")
    lines(x,pt(x,5,2),col="blue")
    lines(x,pt(x,50,4),col="orange")
    
    legend("topleft",legend=paste("df=",c(1,5,5,50)," ncp=", c(0,0,2,4)), lwd=1, col=c("red", "green","blue","orange"))
    

    t2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合T分布,H1:样本所来自的总体分布不符合T分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近T分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rt(1000, 1,2)
    > ks.test(S, "pt", 1, 2)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0253, p-value = 0.5461
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合df1=1, ncp=2的T分布!

    7. β(贝塔Beta)分布

    贝塔分布(Beta Distribution)是指一组定义在(0,1)区间的连续概率分布,Beta分布有α和β两个参数α,β>0,其中α为成功次数加1,β为失败次数加1。

    Beta分布的一个重要应该是作为伯努利分布和二项式分布的共轭先验分布出现,在机器学习和数理统计学中有重要应用。贝塔分布中的参数可以理解为伪计数,伯努利分布的似然函数可以表示为,表示一次事件发生的概率,它为贝塔有相同的形式,因此可以用贝塔分布作为其先验分布。

    1). 概率密度函数

    beta

    随机变量X服从参数为a, β,服从Beta分布
    γ 是伽玛函数

    
    set.seed(1)
    x<-seq(-5,5,length.out=10000)
    y<-dbeta(x,0.5,0.5)
      
    plot(x,y,col="red",xlim=c(0,1),ylim=c(0,6),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Beta Density Distribution")
    
    lines(x,dbeta(x,5,1),col="green")
    lines(x,dbeta(x,1,3),col="blue")
    lines(x,dbeta(x,2,2),col="orange")
    lines(x,dbeta(x,2,5),col="black")
    
    legend("top",legend=paste("a=",c(.5,5,1,2,2)," b=", c(.5,1,3,2,5)), lwd=1,col=c("red", "green","blue","orange","black"))
    

    beta

    2). 累积分布函数

    beta2

    I是正则不完全Beta函数

    
    set.seed(1)
    x<-seq(-5,5,length.out=10000)
    y<-pbeta(x,0.5,0.5)
    
    plot(x,y,col="red",xlim=c(0,1),ylim=c(0,1),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Beta Cumulative Distribution Function")
    
    lines(x,pbeta(x,5,1),col="green")
    lines(x,pbeta(x,1,3),col="blue")
    lines(x,pbeta(x,2,2),col="orange")
    lines(x,pbeta(x,2,5),col="black")
    
    legend("topleft",legend=paste("a=",c(.5,5,1,2,2)," b=", c(.5,1,3,2,5)), lwd=1,col=c("red", "green","blue","orange","black"))
    

    beta2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合Beta分布,H1:样本所来自的总体分布不符合Beta分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近Beta分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rbeta(1000,1,2)
    > ks.test(S, "pbeta",1,2)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0202, p-value = 0.807
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合shape1=1, shape2=2的Beta分布!

    8. χ²(卡方)分布

    若n个相互独立的随机变量ξ₁、ξ₂、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为χ²分布(chi-square distribution)。其中参数n称为自由度,自由度不同就是另一个χ²分布,正如正态分布中均值或方差不同就是另一个正态分布一样。

    1). 概率密度函数

    chi-square

    γ 是伽玛函数

    
    set.seed(1)
    x<-seq(0,10,length.out=1000)
    y<-dchisq(x,1)
    
    plot(x,y,col="red",xlim=c(0,5),ylim=c(0,2),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Chisq Density Distribution")
    
    lines(x,dchisq(x,2),col="green")
    lines(x,dchisq(x,3),col="blue")
    lines(x,dchisq(x,10),col="orange")
    
    legend("topright",legend=paste("df=",c(1,2,3,10)), lwd=1, col=c("red", "green","blue","orange"))
    

    x2

    2). 累积分布函数

    chi-square2

    γ 是伽玛函数

    
    set.seed(1)
    x<-seq(0,10,length.out=1000)
    y<-pchisq(x,1)
    
    plot(x,y,col="red",xlim=c(0,10),ylim=c(0,1),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Chisq Cumulative Distribution Function")
    
    lines(x,pchisq(x,2),col="green")
    lines(x,pchisq(x,3),col="blue")
    lines(x,pchisq(x,10),col="orange")
    
    legend("topleft",legend=paste("df=",c(1,2,3,10)), lwd=1, col=c("red", "green","blue","orange"))
    

    x22

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合卡方分布,H1:样本所来自的总体分布不符合卡方分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近卡方分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-rchisq(1000,1)
    > ks.test(S, "pchisq",1)
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0254, p-value = 0.5385
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合df=1的卡方分布!

    9. 均匀分布

    均匀分布(Uniform distribution)是均匀的,不偏差的一种简单的概率分布,分为:离散型均匀分布与连续型均匀分布。

    1). 概率密度函数

    uniform

    
    set.seed(1)
    x<-seq(0,10,length.out=1000)
    y<-dunif(x,0,1)
    
    plot(x,y,col="red",xlim=c(0,10),ylim=c(0,1.2),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Uniform Density Distribution")
    lines(x,dnorm(x,0,0.5),col="green")
    lines(x,dnorm(x,0,2),col="blue")
    lines(x,dnorm(x,-2,1),col="orange")
    lines(x,dnorm(x,4,2),col="purple")
    
    legend("topright",legend=paste("m=",c(0,0,0,-2,4)," sd=", c(1,0.5,2,1,2)), lwd=1, col=c("red", "green","blue","orange","purple"))
    

    unif

    2). 累积分布函数

    uniform2

    
    set.seed(1)
    x<-seq(0,10,length.out=1000)
    y<-punif(x,0,1)
    
    plot(x,y,col="red",xlim=c(0,10),ylim=c(0,1.2),type='l',
         xaxs="i", yaxs="i",ylab='density',xlab='',
         main="The Uniform Cumulative Distribution Function")
    
    lines(x,punif(x,0,0.5),col="green")
    lines(x,punif(x,0,2),col="blue")
    lines(x,punif(x,-2,1),col="orange")
    
    legend("bottomright",legend=paste("m=",c(0,0,0,-2)," sd=", c(1,0.5,2,1)), lwd=1, col=c("red", "green","blue","orange","purple"))
    

    unif2

    3). 分布检验

    Kolmogorov-Smirnov连续分布检验: 检验单一样本是不是服从某一预先假设的特定分布的方法。以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。

    该检验原假设为H0:数据集符合均匀分布,H1:样本所来自的总体分布不符合均匀分布。令F0(x)表示预先假设的理论分布,Fn(x)表示随机样本的累计概率(频率)函数.

    统计量D为: D=max|F0(x) - Fn(x)|

    • D值越小,越接近0,表示样本数据越接近均匀分布
    • p值,如果p-value小于显著性水平α(0.05),则拒绝H0
    
    > set.seed(1)
    > S<-runif(1000)
    > ks.test(S, "punif")
    	One-sample Kolmogorov-Smirnov test
    data:  S
    D = 0.0244, p-value = 0.5928
    alternative hypothesis: two-sided
    

    结论: D值很小, p-value>0.05,不能拒绝原假设,所以数据集S符合均匀分布!

    在我们掌握了,这几种常用的连续型分布后,我们就可以基于这些分布来建模了,很多的算法模型就能解释通了!!

    参考资料

    转载请注明出处:
    http://blog.fens.me/r-density/

    打赏作者

[转] 十道海量数据处理面试题与十个方法大总结

原文: http://blog.csdn.net/v_JULY_v/article/details/6279498

 

第一部分、十道海量数据处理面试题

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

此题,在我之前的一篇文章算法里头有所提到,当时给出的方案是:IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

再详细介绍下此方案:首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法,还是在这篇文章里头有所阐述。 文中,给出的最终算法是:第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成排序;然后,第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。 即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

还是典型的TOP K算法,解决方案如下: 方案1: 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2: 一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3: 与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloom filter日后会在本BLOG内详细阐述。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

与上第6题类似,我的第一反应时快速排序+二分查找。以下是其它更好的方法: 方案1:oo,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

dizengrong: 方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;这里我们把40亿个数中的每一个用32位的二进制来表示假设这40亿个数开始放在一个文件中。

然后将这40亿个数分成两类: 1.最高位为0 2.最高位为1 并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);与要查找的数的最高位比较并接着进入相应的文件再查找

再然后把这个文件为又分成两类: 1.次最高位为0 2.次最高位为1

并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了); 与要查找的数的次最高位比较并接着进入相应的文件再查找。 ……. 以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。

附:这里,再简单介绍下,位图方法: 使用位图法判断整形数组是否存在重复 判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。

8、怎么在海量数据中找出重复次数最多的一个?

 方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

9、上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第2题提到的堆机制完成。

10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。

附、100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案2:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

第二部分、十个海量数据处理方法大总结

ok,看了上面这么多的面试题,是否有点头晕。是的,需要一个总结。接下来,本文将简单总结下一些处理海量数据问题的常见方法。

下面的方法全部来自http://hi.baidu.com/yanxionglu/blog/博客,对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎讨论。

一、Bloom filter

适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

基本原理及要点:

对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

扩展:

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

二、Hashing

适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

基本原理及要点:

hash函数选择,针对字符串,整数,排列,具体相应的hash方法。

碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

扩展:

d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例:

1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

三、bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

四、堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:

1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

五、双层桶划分—-其实本质上就是【分而治之】的思想,重在分的技巧上!

适用范围:第k大,中位数,不重复或重复的数字

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:

问题实例:

1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

六、数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。

七、倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本: T0 = “it is what it is” T1 = “what is it” T2 = “it is a banana”

我们就能得到下面的反向文件索引:

“a”: {2} “banana”: {2} “is”: {0, 1, 2} “it”: {0, 1, 2} “what”: {0, 1}

检索的条件”what”,”is”和”it”将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

八、外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

扩展:

问题实例:

1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

九、trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:

1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

十、分布式处理 mapreduce

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:

问题实例:

1).The canonical example application of MapReduce is a process to count the appearances ofeach different word in a set of documents:

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

经典问题分析

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。

当然还有更好的方法,就是可以采用分布式计算,基本上就是map-reduce过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是reduce过程。

实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。

而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。

另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

用R解析Mahout用户推荐协同过滤算法(UserCF)

RHadoop实践系列文章,包含了R语言与Hadoop结合进行海量数据分析。Hadoop主要用来存储海量数据,R语言完成MapReduce 算法,用来替代Java的MapReduce实现。有了RHadoop可以让广大的R语言爱好者,有更强大的工具处理大数据1G, 10G, 100G, TB, PB。 由于大数据所带来的单机性能问题,可能会一去不复返了。

RHadoop实践是一套系列文章,主要包括”Hadoop环境搭建”,”RHadoop安装与使用”,R实现MapReduce的协同过滤算法”,”HBase和rhbase的安装与使用”。对于单独的R语言爱好者,Java爱好者,或者Hadoop爱好者来说,同时具备三种语言知识并不容 易。此文虽为入门文章,但R,Java,Hadoop基础知识还是需要大家提前掌握。

关于作者

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-mahout-usercf/

r-mahout

前言
用R全面解析Mahout的基于用户推荐协同过滤算法(UserCF),改进的采用欧氏距离,并用R语言实现,与Mahout的结果进行对比。

Mahout是Hahoop家族用于机器学习的一个框架,包括三个主要部分,推荐,聚类,分类!
我在这里做的是推荐部分。推荐系统在现在的互联网应用中很常见,比如,亚马逊会推荐你买书,豆瓣会给你一个书评,影评。

由于时间仓促,欢迎大家一起讨论。

目录

  1. Mahout的模型介绍
  2. R语言模型实现
  3. 算法实现的原理–矩阵变换
  4. 算法总结
  5. 参考资料

1. Mahout的模型介绍

mahout-recommendation-process

Mahout版本

 
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>0.5</version>
</dependency>

Mahout程序写法


public class UserBaseCFMain {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws IOException, TasteException {
        String file = "metadata/data/testCF.csv";
        DataModel model = new FileDataModel(new File(file));
        UserSimilarity user = new EuclideanDistanceSimilarity(model);
        NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
        Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
        LongPrimitiveIterator iter = model.getUserIDs();

        while (iter.hasNext()) {
            long uid = iter.nextLong();
            List list = r.recommend(uid, RECOMMENDER_NUM);
            System.out.printf("uid:%s", uid);
            for (RecommendedItem ritem : list) {
                System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
            }
            System.out.println();
        }
    }
} 

推荐结果:


uid:1(104,4.250000)(106,4.000000)
uid:2(105,3.956999)
uid:3(103,3.185407)(102,2.802432)
uid:4(102,3.000000)
uid:5 

2. R语言模型实现

  • 1). 建立数据模型
  • 2). 欧氏距离相似度算法
  • 3). 最紧邻算法
  • 4). 推荐算法
  • 5). 运行程序

由于时间仓促,R的代码中,有不少for循环影响性能,请暂时跳过!

1). 建立数据模型


FileDataModel<-function(file){
data<-read.csv(file,header=FALSE)
names(data)<-c("uid","iid","pref")

user <- unique(data$uid)
item <- unique(sort(data$iid))
uidx <- match(data$uid, user)
iidx <- match(data$iid, item)
M <- matrix(0, length(user), length(item))
i <- cbind(uidx, iidx, pref=data$pref)
for(n in 1:nrow(i)){
M[i[n,][1],i[n,][2]]<-i[n,][3]
}
dimnames(M)[[2]]<-item
M
}

2). 欧氏距离相似度算法


EuclideanDistanceSimilarity<-function(M){
row<-nrow(M)
s<-matrix(0, row, row)
for(z1 in 1:row){
for(z2 in 1:row){
if(z1<z2){< span="">
num<-intersect(which(M[z1,]!=0),which(M[z2,]!=0)) #可计算的列

sum<-0
for(z3 in num){
sum<-sum+(M[z1,][z3]-M[z2,][z3])^2
}

s[z2,z1]<-length(num)/(1+sqrt(sum))

if(s[z2,z1]>1) s[z2,z1]<-1 #标准化
if(s[z2,z1]< -1) s[z2,z1]<- -1 #标准化

#print(paste(z1,z2));print(num);print(sum)
}
}
}
#补全三角矩阵
ts<-t(s)
w<-which(upper.tri(ts))
s[w]<-ts[w]
s
}

3). 最紧邻算法

NearestNUserNeighborhood<-function(S,n){ row<-nrow(S) neighbor<-matrix(0, row, n) for(z1 in 1:row){ for(z2 in 1:n){ m<-which.max(S[,z1]) #       print(paste(z1,z2,m,'\n')) neighbor[z1,][z2]<-m S[,z1][m]=0 } } neighbor }

4). 推荐算法


UserBasedRecommender<-function(uid,n,M,S,N){
row<-ncol(N)
col<-ncol(M)
r<-matrix(0, row, col)
N1<-N[uid,]
for(z1 in 1:length(N1)){
num<-intersect(which(M[uid,]==0),which(M[N1[z1],]!=0)) #可计算的列
#     print(num)

for(z2 in num){
#       print(paste("for:",z1,N1[z1],z2,M[N1[z1],z2],S[uid,N1[z1]]))
r[z1,z2]=M[N1[z1],z2]*S[uid,N1[z1]]
}
}

sum<-colSums(r)
s2<-matrix(0, 2, col)
for(z1 in 1:length(N1)){
num<-intersect(which(colSums(r)!=0),which(M[N1[z1],]!=0))
for(z2 in num){
s2[1,][z2]<-s2[1,][z2]+S[uid,N1[z1]]
s2[2,][z2]<-s2[2,][z2]+1
}
}

s2[,which(s2[2,]==1)]=10000
s2<-s2[-2,]

r2<-matrix(0, n, 2)
rr<-sum/s2
item <-dimnames(M)[[2]]
for(z1 in 1:n){
w<-which.max(rr)
if(rr[w]>0.5){
r2[z1,1]<-item[which.max(rr)]
r2[z1,2]<-as.double(rr[w])
rr[w]=0
}
}
r2
}

5). 运行程序


FILE<-"testCF.csv"
NEIGHBORHOOD_NUM<-2
RECOMMENDER_NUM<-3

M<-FileDataModel(FILE)
S<-EuclideanDistanceSimilarity(M)
N<-NearestNUserNeighborhood(S,NEIGHBORHOOD_NUM)

R1<-UserBasedRecommender(1,RECOMMENDER_NUM,M,S,N);R1
##      [,1]  [,2]  
## [1,] "104" "4.25"
## [2,] "106" "4"   
## [3,] "0"   "0" 

R2<-UserBasedRecommender(2,RECOMMENDER_NUM,M,S,N);R2
##      [,1]  [,2]
## [1,] "105" "3.95699903407931"
## [2,] "0"   "0"
## [3,] "0"   "0"

R3<-UserBasedRecommender(3,RECOMMENDER_NUM,M,S,N);R3
##      [,1]  [,2]
## [1,] "103" "3.18540697329411"
## [2,] "102" "2.80243217111765"
## [3,] "0"   "0"

R4<-UserBasedRecommender(4,RECOMMENDER_NUM,M,S,N);R4
##      [,1]  [,2]
## [1,] "102" "3" 
## [2,] "0"   "0" 
## [3,] "0"   "0"

R5<-UserBasedRecommender(5,RECOMMENDER_NUM,M,S,N);R5
##      [,1] [,2]
## [1,]    0    0
## [2,]    0    0
## [3,]    0    0

3. 算法实现的原理–矩阵变换

所谓协同过滤算法,其实就是矩阵变换的结果!!请大家下面留意矩阵操作!
1). 原始数据

 1,101,5.0
  1,102,3.0
  1,103,2.5
  2,101,2.0
  2,102,2.5
  2,103,5.0
  2,104,2.0
  3,101,2.5
  3,104,4.0
  3,105,4.5
  3,107,5.0
  4,101,5.0
  4,103,3.0
  4,104,4.5
  4,106,4.0
  5,101,4.0
  5,102,3.0
  5,103,2.0
  5,104,4.0
  5,105,3.5
  5,106,4.0 

2). 矩阵转换

 101 102 103 104 105 106 107
[1,] 5.0 3.0 2.5 0.0 0.0   0   0
[2,] 2.0 2.5 5.0 2.0 0.0   0   0
[3,] 2.5 0.0 0.0 4.0 4.5   0   5
[4,] 5.0 0.0 3.0 4.5 0.0   4   0
[5,] 4.0 3.0 2.0 4.0 3.5   4   0 

3). 欧氏相似矩阵转换

 [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.0000000 0.6076560 0.2857143 1.0000000 1.0000000
[2,] 0.6076560 0.0000000 0.6532633 0.5568464 0.7761999
[3,] 0.2857143 0.6532633 0.0000000 0.5634581 1.0000000
[4,] 1.0000000 0.5568464 0.5634581 0.0000000 1.0000000
[5,] 1.0000000 0.7761999 1.0000000 1.0000000 0.0000000 

4). 最近邻矩阵

 top1 top2
[1,]    4    5
[2,]    5    3
[3,]    5    2
[4,]    1    5
[5,]    1    3 

5). 以R1为例的推荐矩阵

 101  102  103  104  105  106  107
   4    0    0    0  4.5  0.0    4    0
   5    0    0    0  4.0  3.5    4    0 

6). 以R1为例的推荐结果

 推荐物品  物品得分
[1,] "104"    "4.25"
[2,] "106"    "4" 

4. 算法总结

我这里只是用R语言现实了Mahout的基于“用户的”,“欧氏距离”,“最近邻”的协同过滤算法。实现过程中发现,Mahout做各种算法时,都有自己的优化。

比如,算欧氏距离时,并不是标准的

similar = 1/(1+sqrt( (a-b)2 + (a-c)2 ))

而是改进的算法

similar = n/(1+sqrt( (a-b)2 + (a-c)2 )) 
  1. n为b,c的个数
  2. similar>1 => similar=1
  3. similar<-1 => similar=-1

从而更能优化结果。

5. 参考资料:

  1. Mahout In Action
  2. Mahout Source Code
  3. R help

转载请注明出处:
http://blog.fens.me/r-mahout-usercf/

打赏作者

[转] 深入探讨PageRank(二):PageRank原理剖析

深入探讨PageRank(二):PageRank原理剖析

 

关于PageRank的基础知识简介请参见博文:《深入探讨PageRank(一):PageRank算法原理入门》

 

http://blog.csdn.net/monkey_d_meng/article/details/6556295

 

一、PageRank算法的简单举例

Google PageRank算法的思想精华在于:将一个网页级别/重要性的排序问题转化成了一个公共参与、以群体民主投票的方式求解的问题,网页之间的链接即被认为是投票行为。同时,各个站点投票的权重不同,重要的网站投票具有较大的分量,而该网站是否重要的标准还需要依照其PageRank值。这看似是一个矛盾的过程:即我们需要用PageRank值来计算PageRank值~

听起来有点不可思议,既像是递归,又像是迭代,似乎陷入了一个漩涡,Google的创始人佩奇和布林证明了这个过程最终收敛值与初始值无关。遗憾的是我一直都没有找到这个证明,甚至我把佩奇他们当年那篇论文找出来看也没有发现~

对于PageRank的收敛性,我们是可以找到反例的,这说明PageRank至少在某些情况下是不可能收敛的,或者说是收敛不完备的。在本文的第三部分,我们将PageRank的问题转化为了马尔可夫链的概率转移问题,其收敛性的证明也即转化为了马氏链的平稳分布是否存在的证明。我们先来看一个简单的例子:

Google PageRank取值范围是0~10,为了叙述方便,我们使用0~1的区间作为度量,这并不会影响我们对PageRank原理的剖析,并且在初始化的时候,我们假设所有网站的PageRank的值是均匀分布的。这意味着,如果有N个网站,那么每个网站的PageRank初始值都是1/N。现在假设有4个网站A、B、C、D,则它们的初始PageRank都是0.25,它们的链接关系如下:

 

 

 

则初始值PR(A) = PR(B) = PR(C) = PR(D) = 0.25,又因为B、C、D都有指向A的链接,因此,它们每人都为A贡献了0.25的PageRank值,重新计算A的PageRank值为:PR(A) = PR(B) + PR(C) + PR(D) = 0.75,由于B、C和D并没有外部链接指向它们,因此PR(B)、PR(C)、PR(D)在这次计算中将被赋值为0。反复套用PageRank的计算公式,来看一下,这种情况下PageRank的收敛性,在第二次迭代之后,所有的PageRank值就都是0了:

PageRank

PR(A)

PR(B)

PR(C)

PR(D)

初始值

0.25

0.25

0.25

0.25

第一次迭代后

0.75

0

0

0

第二次迭代后

0

0

0

0

我们来分析一下这个例子PageRank收敛的情况,由于没有网站链接到D,那么第一次迭代之后PR(D)=0,这将导致PR(B)=0,继而导致PR(C)=0和PR(A)=0。

 

 

现在来看第个例子,假设网站B还有C链接,网站D上有其他三个网站的链接。对于B而言的话,它把自己的总价值分散投给了A和C,各占一半的PageRank,即0.125,C和D的情况同理。即一个网站投票给其它网站PageRank的值,需要除以它所链接到的网站总数。此时PageRank的计算公式为:

PR(A) = PR(B) / 2 + PR(C) / 1 + PR(D) / 3PR(B) = PR(D) / 3

PR(C) = PR(B) / 2 + PR(D) / 3

PR(D) = 0

 

 

PageRank

PR(A)

PR(B)

PR(C)

PR(D)

初始值

0.25

0.25

0.25

0.25

第一次迭代后

0.4583

0.0833

0.2083

0

第二次迭代后

0.25

0

0.0417

0

第三次迭代后

.0.417

0

0

0

第四次迭代后

0

0

0

0

PageRank值计算过程的一般步骤可以概括如下:

(1)为每个网站设置一个初始的PageRank值。

(2)第一次迭代:每个网站得到一个新的PageRank。

(3)第二次迭代:用这组新的PageRank再按上述公式形成另一组新的PageRank。

……

当然,我们最关心的问题是,如此迭代下去,这些PageRank的值最终会收敛吗?我们上述的两个例子都是收敛的,但是不是所有情况都是如此呢?而且,上述例子中,我们发现,一旦某个页面的外部链接数目为0的话,那必然将导致全部网页最终收敛值为0。

 

二、PageRank算法的“黑洞效应”

为了讨论收敛性的问题,我们暂时抛开具体的网站,把问题做一个抽象化的描述,我们可以把网页之间的关联关系理解为是若干张有向图,图与图之间是互不连通的,那我们只考虑每一部分的收敛性,并不会影响其他部分的收敛性。我们考虑把边权值当作网站所传递的PageRank值,则对于任意一个顶点而言,其出边的权值之和必为1。

 

一个很显然的结论是,如果连通图中有一个顶点的入度为0,则经过有限次迭代之后,该连通图内的所有顶点的PageRank均为0,形象的说,这个顶点就像一个黑洞一样,把整体的PageRank值慢慢地“吸收”了。由于它不对外贡献任何PR值,所以整体的PR总和是在不断地减少,直到最终收敛到0。我把它称之为:PageRank的“黑洞效应”。至于说Google是如何防止这种情况的发生,毕竟一个网站没有外链是完全有可能的,我也尚未找到确切的答案。不过网上道是有人给出了一种解决办法:即如果一个网站没有外链,那么就假定该连通图内其余所有的网点都是它的外链,这样我们就避免了整体PageRank值被吸收的现象。

当一个连通图内部每一个顶点入度均大于0时,不难看出,PR值在内部流通过程中,整体的PR值是守恒的。如果是存在一个顶点的入度为0呢?通过一次迭代,它的PR值就会变成0,而把它的那部分PR值贡献给了图中剩余的部分。所以,最终入度为0的顶点的PR值都将是0,而整体的PR仍然守恒。那么整体的PR值守恒就一定能够保证每个顶点的PR值最终会收敛吗?下面看一个简单的例子:

 

按照之前的迭代步骤,会得到一个迭代的结果表。这将是一个无限循环,且不会收敛的过程。

PageRank

PR(A)

PR(B)

PR(C)

PR(D)

初始值

0.25

0.25

0.25

0.25

第一次迭代后

0

0.375

0.25

0.375

第二次迭代后

0

0.375

0.375

0.25

第三次迭代后

0

0.25

0.375

0.375

第四次迭代后

0

0.375

0.25

0.375

第五次迭代后

0

其实,同样的问题我们还可以换一个角度来考虑,因为本质上有向图和矩阵是可以相互转化的,令A[i][j]表示从顶点i到达顶点j的概率,那么目力的矩阵表示就是:

0     0.5  0     0.50     0     1     0

0     0     0     1

0     1     0     0

而我们所给定的初始向量是:(0.25   0.25       0.25       0.25),做第一次迭代,就相当于用初始向量乘以上面的矩阵。第二次迭代就相当于第一次迭代的结果再乘以上面的矩阵……实际上,在随机过程理论中,上述矩阵被称为“转移概率矩阵”。这种离散状态按照离散时间的随机转移过程称为马氏链(马尔可夫链,Markov Chain)。设转移概率矩阵为P,若存在正整数N,使得P^N>0(每个元素大于0),这种链被称作正则链,它存在唯一的极限状态概率,并且与初始状态无关。

在这里,我们仅仅是非常简单地讨论了一下PageRank的原理,这与Google PageRank的实际算法实现相当甚远。域名数据、内容质量、用户数据、建站时间等都有可能被考虑进去,从而形成一个完善的算法。

当然,最让人惊叹的是,Google的PageRank能够应对互联网所产生的如此海量的网页信息和实时的变化,并能够在有限的时间内计算出所有网站的PageRank!这里面到底蕴涵着什么样的奥秘,我也会继续地追寻下去!

 

三、PageRank算法的马尔科夫过程分析

从第二节的陈述中我们知道,事实上,PageRank值在转移过程中变化规律是完全可以用马尔科夫的状态转移来进行表征的,两者本质属于同一个问题。则当PageRank值收敛时,即为马尔可科夫链达到平衡分布。推荐大家去读《随机过程》的教材,这里不在详细地讨论马氏链的内容,只给出相应的结论。

为了形象说明马氏链,这里举一个例子。假设一{A, B, C}为马氏链,其转移概率矩阵如下所示:

0.7         0.1         0.20.1         0.8         0.1

0.05       0.05       0.9

因为该马氏链是不可约的非周期的有限状态,平稳分布存在,则我们要求其平衡分布为:

X = 0.7X + 0.1Y + 0.05ZY = 0.1X + 0.8Y + 0.05Z

Z = 0.2X + 0.1Y + 0.9Z

X + Y + Z = 1

解得上述方程组的平稳分布为:X = 0.1765,Y = 0.2353,Z = 0.5882。

既然,说我们把PageRank收敛性问题转化为了求马尔可夫链的平稳分布的问题,那么我们就可以从马氏链的角度来分析问题。因此,对于PageRank的收敛性问题的证明也就迎刃而解了,只需要证明马氏链在什么情况下才会出现平稳分布即可。我们可以知道马氏链有三个推论:

推论1. 有限状态的不可约非周期马尔可夫链必存在平稳分布。

推论2. 若不可约马尔可夫链的所有状态是非常返或零常返的,则不存在平稳分布。

推论3. 若{Xi}是不可约的非周期马氏链的平稳分布,则lim(n→∞)Pj(n) = Xi。

上面的三个推论看不懂不要紧,找本《随机过程》的书就明白了,这里不再详细讨论了。既然问题得以转化,那么我们还计算一个实例,看看PageRank是如何工作的。假设这里有相互链接关系的7个HTML网页,并且HTML网页之间的链接关系闭合于这1~7个网页中,也即是说,除了这些网页之外,没有任何链接的出入。

 

那么我们可以很容易地将这个链接关系使用数学的方式表示出来。首先,分析链接的关系,列举出各个链接源的ID及其所链接的目标ID。

链接源I D 链接目标 ID1                   2,3 ,4,5, 7

2                   1

3                   1,2

4                   2,3,5

5                  1,3,4,6

6                   1,5

7                   5

使用邻接矩阵的形式表述网页之间的链接关系,A[i][j]=1表示从i到j有链接,否则表示无链接,A为7*7的矩阵。

A = [0, 1, 1, 1, 1, 0, 1;

1, 0, 0, 0, 0, 0, 0;

1, 1, 0, 0, 0, 0, 0;

0, 1, 1, 0, 1, 0, 0;

1, 0, 1, 1, 0, 1, 0;

1, 0, 0, 0, 1, 0, 0;

0, 0, 0, 0, 1, 0, 0;

]

我们现假设,每个网页初始的PageRank均为1,则会形成一个初始的PageRank转移矩阵。

A = [0,    1/5,        1/5,        1/5,        1/5,        0,    1/5;

1,    0,           0,           0,           0,           0,    0;

1/2, 1/2,        0,           0,           0,           0,    0;

0,    1/3,        1/3,        0,           1/3,        0,    0;

1/4, 0,           1/4,        1/4,        0,           1/4, 0;

1/2, 0,           0,           0,           1/2,        0,    0;

0,    0,           0,           0,           1,           0,    0;

]

这样的话,我们就可以按照求马氏链平稳分布的方式,求得PageRank收敛结果,方程组为:

X1 = X2 + X3 / 2 + X5 / 4 + X6 / 2X2 = X1 / 5 + X3 / 2 + X4 / 3

X3 = X1 / 5 + X4 / 3 + X5 / 4

X4 = X1 / 5 + X5 / 4

X5 = X1 / 5 + X4 / 3 + X6 / 2 + X7

X6 = X5 / 4

X7 = X1 / 5

X1 + X2 + X3 + X4 + X5 + X6 + x7 = 1

解这个方程,最终我们得到每个网页的PageRank收敛值分别为:

X1 = 0.303514,X2 = 0.38286,X3 = 0.32396,X4 = 0.24297,X5 = 0.41231,X6 = 0.10308,X7 = 0.13989。

将PageRank的评价按顺序排列,小数点3位四舍五入,可以得到下表:

名次 PageRank   文件ID   发出链接ID  被链接ID1     0.304     1       2,3,4,5,7   2,3,5,6

2     0.179     5       1,3,4,6     1,4,6,7

3     0.166     2       1           1,3,4

4     0.141     3       1,2         1,4,5

5     0.105     4       2,3,5       1,5

6     0.061     7       5           1

7     0.045     6       1,5          5

让我们详细地看一下。ID=1 的文件的 PageRank 是0.304,占据全体的三分之一,成为了第1位。特别需要说明的是,起到相当大效果的是从排在第3位的 ID=2页面中得到了所有的 PageRank(0.166)数。ID=2页面有从3个地方过来的反向链接,而只有面向 ID=1页面的一个链接,因此(面向ID=1页面的)链接就得到了所有的 PageRank 数。不过,就因为 ID=1页面是正向链接和反向链接最多的页面,也可以理解它是最受欢迎的页面吧。

 

 

 

依据上图的PageRank值,我们实际地试着计算一下PageRank的收支,只要将自各页的流入量单纯相加即可。譬如 ID=1 的流入量为:

ID=1的流入量=(ID=2发出的Rank)+(ID=3发出的Rank) + (ID=5发出的Rank) + (ID=6发出的Rank) = 0.166 + 0.141 / 2 + 0.179 / 4 + 0.045 / 2 = 0.30375

在误差范围内PageRank的收支相符合。其他页面ID的情况也一样。以上的 PageRank 推移图正表示了这个收支。沿着各自的链接发出的PageRank等于此页面原有的PageRank除以发出链接数的值,而且和各自的页面的PageRank收支相平衡。

不过,这样绝妙均衡的本身,对理解线形代数的人来说当然不会是让人惊讶的事情。因为这正是“特性值和固有矢量的性质”,总之这样被选的数值的组就是固有矢量。以上就是 PageRank 的基本原理。 Google 做的就是大规模地处理这样的非常特性值问题。

PS:LZ系保研,由于没有参加考研,像《线性代数》、《随机过程》好多年没摸过了,很多知识都有所遗忘,所以写的不深入。本文的一些内容是参考了别人的博客,自己又加入了些新元素,算是做一次探讨。当然,接下来LZ会开始复习一下相关的数学知识,后续会重写本文,以便于让本文显得更为Strong~

ubuntu装sqlplus比win要复杂的多!

首先,Ubuntu 12.04LTS,没有装Oracle的Server

$ uname -a
Linux conan 3.2.0-27-generic-pae
#43-Ubuntu SMP Fri Jul 6 15:06:05 UTC 2012 i686 i686 i386 GNU/Linux

 

下载Oracle Clinet rpm包
https://help.ubuntu.com/community/Oracle%20Instant%20Client

 

  • Download the Oracle Instantclient RPM files fromhttp://www.oracle.com/technetwork/database/features/instant-client/index-097480.html. Everyone needs either “Basic” or “Basic lite”, and most users will want “SQL*Plus” and the “SDK”.
  • Convert these .rpm files into .deb packages and install using “alien” (“sudo apt-get install alien” if you don’t have it):
    alien -i oracle-instantclient-basic*.rpm
    alien -i oracle-instantclient-sqlplus*.rpm
    alien -i oracle-instantclient-devel*.rpm

 

然后,设置 ldconfig

 

sudo vi /etc/ld.so.conf.d/oracle.conf
  • and add the oracle library path as the first line. For example,

 

/usr/lib/oracle/11.1.0.1/client/lib
  • or

 

/usr/lib/oracle/11.2/client/lib/
  • Then run ldconfig:
    sudo ldconfig

这时,执行sqlplus就不报缺少*.o的错误了。

找到client的安装目录,新建一个文件, tnsnames.ora,在这个文件配置相关的访问参数。

 

test=
(DESCRIPTION=
  (ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.1)(PORT+1521))
  (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=tea.tea))
)

然后,再设置环境变量TNS_ADMIN到clinet的安装目录

export TNS_ADMIN=/usr/lib/oracle/11.2/client/lib

 

都设置成功通过sqlplus启动
sqlplus username/password@test