R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
关于作者:
- 张丹(Conan), 程序员Java,R,PHP,Javascript
- weibo:@Conan_Z
- blog: http://blog.fens.me
- email: bsspirit@gmail.com
转载请注明出处:
http://blog.fens.me/r-ideal/
前言
本篇文章是受51CTO编辑的约稿文章,主要谈谈以下5种语言 NODE,LUA,Python,Ruby,R ,哪个在2014年的应用前景会更好?51CTO文章地址:http://developer.51cto.com/art/201402/430476_all.htm
我毫不犹豫的选择R。R不仅是2014年,也是以后更长一段时间的主角。
目录
- 我的编程背景
- 为什么我会选择R?
- R的应用前景
- 时代赋予R的任务
- 作者介绍
1. 我的编程背景
本人程序员、架构师,从编程入门到今天,一直深信着Java是改变世界的语言,Java已经做到了,而且一直很辉煌。但当Java的世界越来越大,变得无所不能的时候,反而不够专业,给了其他语言发展的机会。
本次要比较要5种编程语言(NODE,LUA,Python,Ruby,R),这些都是非常优秀的,在特定领域发展壮大的语言。
我已使用Java语言 11年,R语言 3年,Node 1年,对于本次问题 “哪个语言在2014年的应用前景会更好?”,我选择R语言。
2. 为什么我会选择R?
我会从下面的几个方面,来说明我选择R的原因。
- R的基因
- R的发展
- R的社区和资源
- R的哲学
- R的使用者
- R的语法
- R的思维模式
- R解决的问题
- R的不足
1). R的基因
R是统计学家发明的语言,天生具有统计的基因。
从我开始学习R语言,我就开始了知识的跨界思考。统计基于概率论,概率论又基于数学,用计算机的方式编程,解决某个领域的实际问题。简单一算,4个学科知识的交集,决定着我们解决问题的能力。统计的基因,让R语言与众不同!
2). R的发展
R一直在小众领域成长着,最早也只有统计学家在用,主要用R来代替SAS做统计计算。时代在进步,随着大数据的爆发,R终于在这一波浪潮中,被工业界所发现。然后,有越来越多的工程背景的人加入到这个圈子,对R计算引擎,R的性能,R的各种程序包进行改进和升级,让R获得了新生。
我们现在用到的R语言软件,已经越来越接近工业软件的标准了。由工程师推动的R的发展速度,远远地超过了由统计学家推动的步伐。随着人们对数据分析要求的进一步增加,R会以更快的脚步继续发展,将成为免费的、开源的、数据分析软件的代名词。
3). R的社区和资源
R的发展,离不开R的社区支持。当然,我不得不承认R的官方社区,从Web页上看起来太简陋了,稍微调整一下CSS样式表,都会比现在好看很多。也许这种简单、无修饰也是统计学家的基因吧。
在R的社区中,我们可以下载到R语言软件,R的第三方软件包,和R的其他支持软件。可以找到开发者论坛,R-Journal列表,软件包列表,R语言图书列表,R用户组等的信息,同其他语言的社区资源一样丰富。
R是自由软件,开发者可以开发自己的软件包,封装自己的功能,然后在CRAN上面发布。截止到2014年2月,共有5236个R包在CRAN上面发布。
可能很多人会说只有5236个包,数量太少了。这是因为CRAN是需要提交申请的,R语言小组审核,检查后再会发布的出来。而且审核非常严格的,高质量是发布一个新的R包基本要求。由于CRAN过于严格的审查,让很多的开发者选择在RForge上发布,还有些R包是基于Github发布的,我也在github上面发布了自己的R包:https://github.com/bsspirit/chinaWeather。
- R官方地址:http://www.r-project.org/
- R开发者论坛:http://r.789695.n4.nabble.com/
- CRAN:http://cran.rstudio.com/
- RForge:https://r-forge.r-project.org/
4). R的哲学
每种语言都有自己的设计理念和哲学,而我体会的R的哲学,就是“静下心做事情”。
R不需要很长的代码,R也不需要设计模式。一个函数调用,传几个参数,就能实现一个复杂的统计模型。我们需要思考,用什么模型,传什么参数,而不是怎么进行程序设计。
我们可能会用R实现 “从一个数学公式,变成一个统计模型” 的过程,我们也可能会考虑 “如何让一个分类器结果更准确”,但我们不会思考 “时间复杂度是多少,空间复杂度是多少”。
R的哲学,可以让你把数学和统计学的知识,变成计算模型,这也是R的基因所决定的。
5). R的使用者
R语言早期主要是学术界统计学家在用,在各种不同的领域,包括统计分析,应用数学,计量经济,金融分析,财经分析,人文科学,数据挖掘,人工智能,生物信息学,生物制药,全球地理科学,数据可视化等等。
近些年来,由互联网引发的大数据革命,才让工业界的人,开始认识R,加入R。当越来越多的有工程背景的人,加入到R语言使用者的队伍后,R才开始像着全领域发展,逐步实现工业化的要求。
- RevolutionAnalytics公司的RHadoop产品,让R可以直接调用Hadoop集群资源
- RStudio公司的RStudio产品,给了我们对于编辑软件新的认识
- RMySQL, ROracle, RJDBC 打通了R和数据库访问通道
- rmongodb, rredis, RHive, rhbase, RCassandra 打通过R和NoSQL的访问通道
- Rmpi, snow 打通了单机多核并行计算的通道
- Rserve,rwebsocket 打通了R语言的跨平台通信的通道
R不仅是学术界的语言,更将成为工业界必备的语言。
6). R的语法
R是面向对象语言,语法如同Python。但R的语法很自由,很多函数的名字,看起来都是那么随意,这也是R的哲学的一部分吧!
看到这样的赋值语法,有其他语言基础的程序员,肯定会崩溃的。
> a<-c(1,2,3,4)->b
> a
[1] 1 2 3 4
> b
[1] 1 2 3 4
随机取正态分布N(0,1)的10个数,又是这么的简单。
> rnorm(10)
[1] -0.694541401 1.877780959 -0.178608091 0.004362026
[5] 0.836891967 1.794961298 0.115284187 0.155175219
[9] 0.464028612 -0.842569561
用R画鸢尾花的数据集的散点图,非常好的可视化效果
> data(iris) #加载数据集
> head(iris) #查看前6行数据集
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> plot(iris) #画图
正是因为R自由哲学,让R的语法独特而简洁,我已经喜欢上这种哲学了。
7). R的思维模式
R语言让我跳出了原有思维定式。使用R语言,我们应该从统计学的角度想问题,而不是计算机的思维模式。
R语言是直接面向数据的语言。在我们的日常生活中,无论做什么事情都会产生数据,上网有浏览数据,买东西有消费数据,就算什么都不干,也会受大气PM2.5的影响。利用R语言,我可以直接分析这些数据。
面向什么业务,就分析什么数据,不需要从产品经理向程序员的角色转换,不需要考虑有什么功能,更不需要考虑程序设计的事。
跳出程序员的思维模式,你所能认知的东西会更多,找到更适合自己的定位。
8). R解决的问题
当数据成为生产资料的时候,R就是为人们能运用生产资料创造价值的生产工具,R语言主要解决的是数据的问题。
在很长期的历史时期,人类产生的数据都没有自互联网诞生以来产生的数据多;当Hadoop帮助人们解决了大数据存储的问题后,如何发现数据的价值,成为当前最火的话题。R语言的统计分析能力,就是数据分析最好的工具。
所以,R要解决的问题,就是大数据时代的问题,是时代赋予的任务。
9). R的不足
前面说了太多R的优点了,R也有很多不足之处。
- R语言是统计学家编写的软件,并不如软件工程师编写的软件那么健壮。
- R语言软件的性能,存在一些问题。
- R语言很自由,语法命名不太规范,需要花时间熟悉。
- R语言结合了很多数学、概率、统计的基础知识,学起来有一定门槛。
R的这些不足,都是可以克服的。当有更多的工程背景的人加入的时候,R语言会比现在更强大,帮助使用者创造更多的价值。
3. R的应用前景
R可以做所有SAS做的事情。
R应用最热门的领域:
- 统计分析:包括统计分布,假设检验,统计建模
- 金融分析:量化策略,投资组合,风险控制,时间序列,波动率
- 数据挖掘:数据挖掘算法,数据建模,机器学习
- 互联网:推荐系统,消费预测,社交网络
- 生物信息学:DNA分析,物种分析
- 生物制药:生存分析,制药过程管理
- 全球地理科学:天气,气候,遥感数据
- 数据可视化:静态图,可交互的动态图,社交图,地图,热图,与各种Javascript库的集成
我在博客中已经写了很多篇关于R语言应用的文章,包括上面所列出的除生物以外的热门领域。R有着非常广阔的应用前景,而且R也将成为新一代的最有能力创造价值的工具。
4. 时代赋予R的任务
R语言是在大数据时代被工业界了解和认识的语言,R语言被时代赋予了,挖掘数据价值,发现数据规律,创造数据财富的任务。
R语言也是帮助人们发挥智慧和创造力的最好的生产工具,我们不仅要学好R语言,还要用好R语言,为社会注入更多的创新的生产力。
所以,通过上面的几节内容所有的文字描述,我认为“R是最值得学习的编程语言”。不论你还在读书,还是已经工作,掌握R语言这个工具,找最适合自己的位置,前途将无限量。
最后总结:在这5种语言中,R是最特殊的,R被赋予了与其他语言不同的使命。R的基因决定了,R将成为2014年,也可能是以后更长一段时间的主角。
5. 作者介绍
张丹,程序员、架构师,创业者。我的博客: http://blog.fens.me。
从程序员开始,到架构师一路走来,经历过太多的系统和应用。做过手机游戏,写过编程工具;做过大型Web应用系统,写过公司内部CRM;做过SOA的系统集成,写过基于Hadoop的大数据工具;做过外包,做过电商,做过团购,做过支付,做过SNS,也做过移动SNS。以前只用Java,然后学了PHP,现在用R和Node。最后跳出IT圈,进入金融圈,研发量化交易软件。
注:我正在写一本关于R语言的图书,本篇文章会作为图书的开篇文章。
######################################################
看文字不过瘾,作者视频讲解,请访问网站:http://onbook.me/video
######################################################
转载请注明出处:
http://blog.fens.me/r-ideal/
[…] 本文来自于“统计圈”十几位中国R语言资深用户闲聊吐槽。话题的起因在于我最近发表的一篇文章:R是最值得学习的编程语言。 […]
mark!
“本次要比较要5种编程语言(NODE,LUA,Python,Ruby,R),这些都是非常优秀的,在特定领域发展壮大的语言。”
请问所谓比较在哪里?
本文只偏重介绍R语言,编程语言比较以后有时间会再写的。
博主应该是跳到IT圈应用的的另一个领域了吧
我完全转到金融了。