Blog Archives

2017CDAS中国数据分析师行业峰会:用R语言解读股利贴现模型

跨界知识聚会系列文章,“知识是用来分享和传承的”,各种会议、论坛、沙龙都是分享知识的绝佳场所。我也有幸作为演讲嘉宾参加了一些国内的大型会议,向大家展示我所做的一些成果。从听众到演讲感觉是不一样的,把知识分享出来,你才能收获更多。

关于作者:

  • 张丹(Conan), 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/meeting-cdas-20170729

前言

今年的数据分析师大会,国贸,中国大饭店,高规格,上档次!虽然只有1天,却吸引了3000+人的报名参会。11个分会场都是从数据角度来切入,包括了 大数据与生物医疗,大数据与云计算,互联网大数据,电商大数据,大数据与金融,大数据与人工智能,数据可视化与商业BI,大数据与交通旅游,大数据与智慧投资,数据库技术与实战,CDA数据分析师专场。

我的分享在 大数据与金融专场,见到了很多熟悉的朋友,同时也认识不少的新朋友。希望大家能够学到知识,并真正地落地到实际的工作中来。

我已经连续参加了3年的CDAS中国数据分析师行业峰会,祝这个数据的大会越办越好。前2年数据分析师大会会议纪要:2016数据分析师大会2015数据分析师大会

目录

  1. 我的演讲主题:用R语言解读股利贴现模型
  2. 会议体验和照片分享

1. 我的演讲主题:用R语言解读股利贴现模型

用R语言解读股利贴现模型,PPT下载,主要内容来自我的一篇博文:用R语言解读股利贴现模型(未发布)

本次分享我详细讲述了,股利贴现模型的原理和方法,并用这个模型分析招商银行(600036.SH)股票,最后用程序来实现。如果你按照我的思路去操作,相信也能很快找到被低估的股票,从而赚到靠能力可以赚到的钱。

本次分享的目录:

  1. 发现错误的定价
  2. 股利贴现模型
  3. 投资机会
  4. A股市场案例分析
  5. 用R语言实现

为了本次的分享,我花了2周的时间进行准备。希望能够给大家分享一个,实用的模型,这样听完了就可以回去动手实验了。由于分享时间比较短,而且又有不少的金融专业知识,要在30分内给大家讲一个新东西,确实很难啊,我也是挑战了一下自己。

我一直延续了一贯的演讲风格,有内容,有图片,有代码,有互动。从方法理论的思路开始,到市场特征检验,再到数学公式,R语言建模,把知识和市场操作联系起来,听完我的分享,你回去把上就可以动手实践。利用IT人的技术优势,可以真正地与实际操作结合起来,实现从IT技术到价值的转变。

2. 会议体验和照片分享

这次的大会虽然只有1天,也能看出来主办方准备充分。不得不说一句,所有的工作人员辛苦了!

“跨界互联,数聚未来”是本次会议的主题,会议主页:http://cdas.cda.cn/。以数据为题,研习技术,比拼创意,交流思想,探寻未来,打造一场大数据与大思维的盛筵。

2.1 大数据与金融场,我是第4位分享嘉宾。

  • 李峰,IBM Analytics LBS首席数据科学家,主题:人工智能助力银行审计管理
  • 于晓松,诸葛io产品VP,主题:深入金融场景的数据驱动与应用
  • 郑志勇,集思录副总裁,主题:资产配置与数据分析
  • 张丹,《R的极客理想》系列图书作者,主题:用R语言实现量化交易策略
  • 雷涛,天云大数据CEO,主题:Fintech实践:从BI到AI的演进路径
  • 赵刚,北京赛智时代信息技术咨询有限公司CEO,主题:“双创”大数据金融分析服务

我在分享的照片

其他嘉宾的照片

李峰

于晓松

郑志勇

金融会场照片

2.2 会议相关照片

大会开幕式

精彩瞬间

工作人员

最后,感谢CDAS工作人员的辛苦劳动,希望保持高水平会议越办越好!

转载请注明出处:
http://blog.fens.me/meeting-cdas-20170729

打赏作者

2017微软MVP:在AWS上部署免费的Shiny应用

跨界知识聚会系列文章,“知识是用来分享和传承的”,各种会议、论坛、沙龙都是分享知识的绝佳场所。我也有幸作为演讲嘉宾参加了一些国内的大型会议,向大家展示我所做的一些成果。从听众到演讲感觉是不一样的,把知识分享出来,你才能收获更多。

关于作者

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog:http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/meeting-mvp-20170723

前言

第一次参加微软的技术日活动,感觉微软已经变得开放了,已不是10年前我所印象的对开源很敌对的微软了。在微软的会场,我主要介绍的是开源技术R语言。

本次的我的主题是AWS和Shiny,Shiny是R语言中一个“神级”的,绝对是好东西;而AWS为全球的开发者提供了免费的服务器,值得赞赏。把这两个好的东西结合在一起,就是一个很好的业务模式,可以极大的帮助个人开发者,来发布自己的作品或产品。

本次所分享的内容为一个实战案例,你可以跟着我的操作,重现我所讲的总有内容。错过沙龙的同学,也可以在天善社区的网站上找到分享的内容。

目录

  1. 我的演讲主题:在AWS上部署免费的Shiny应用
  2. 会议体验和照片分享

1. 我的演讲主题:在AWS上部署免费的Shiny应用

在AWS上部署免费的Shiny应用,PPT下载,主要内容来自我的一篇博文:在AWS上部署免费的Shiny应用

分享主题的目录大纲如下:

  1. Shiny是什么?
  2. 本地开发一个Shiny小应用
  3. 申请AWS免费服务器
  4. 在AWS上安装R语言环境
  5. 在AWS上安装Shiny Server
  6. 在AWS上部署自己的Shiny应用
  7. 番外篇

前6个目录都是正常的技术,番外篇,其实是比较有意思的一个内容。原本我是准备把一个基于赌场原型的Shiny应用放到互联网,考虑服务器位置和选型的问题,无意中发现了AWS的免费资源,这样就有了这样的一篇Shiny与AWS结合的文章。

提问环节时,同学们很热列问了不少的R和Shiny的问题。真的希望大家,动手试一下,R语言一定会给你很棒的体验的。

分享结束后,和几位现场的朋友,聊了中国市场环境与发展机会。感觉到各行各业的人,都体会到了大数据所带来的变化,准备进行大数据的市场,获得更多的商业机会。我觉得中国是有大数据土壤的,而且环境在变好,有越来越多的机会,给留我们去创新和发展。

同时,我也在致力于推动R语言在中国金融领域的发展,让R可以给更多的用户使用,培养出更多的数据分析师。也希望让我们中国人的技术能够走出去到世界的舞台。希望多能认识志同道合的朋友,一起做一些事情。

2. 会议体验和照片分享

本次由5个主题组成,主要是微软的产品技术介绍,毕竟是在人家的主场。

本次微软MVP参加分享的5位嘉宾,主持人 和 微软MVP项目负责人介绍:

吕品,活动介绍 & 现场主持
天善智能联合创始人,微软MVP

Christina,主题:微软项目介绍
China MVP Community Manager

张丹,主题:在AWS上部署免费的Shiny应用,PPT下载
《R的极客理想》系列图书作者,前况客创始人兼CTO。12年IT编程背景,精通R ,Java, Nodejs 编程,获得10项SUN及IBM技术认证。著有《R的极客理想-工具篇》、《R的极客理想-高级开发篇》,合著《数据实践之美》,新书《R的极客理想-量化投资篇》。

刘凯,主题:PowerBI高阶分析:高阶预测分析;DAX万能组合函数的高级应用
IMA中国教育委员会认证讲师,擅长业财融合背景下的数据整合和运营财务分析。曾任职于4A的奥美互动咨询和四大中的KPMG毕博管理咨询,服务于海尔金控等多家客户。

宋卫东,主题:数据仓库运维那些事
从事商业智能数据仓库方向11年,就职某汽车公司,负责数据仓库和大数据等项目。

李奇,主题:Excel BI:无所不能的业务数据分析利器
中国电子表格应用大会主席、曾任职于IBM及德勤会计师事务所,从事业务分析及数据分析咨询工作,Excel BI培训讲师、擅长用Excel创建商业智能报表。

宋沄剑,主题:亿级SQL Server运维的n个最佳实践,PPT下载
微软DataPlatform MVP(since 2012),目前就职于易车网,负责易车数据库与基于Apache生态圈的大数据平台的运维。曾任数据库高级顾问,帮助国内多家客户设计高可用/灾备方案,监控方案、运维自动化方案,并处理SQL Server企业应用实施、日常管理中常见的棘手问题。曾翻译包括SQLServer、PowerShell、Python在内的多本技术书籍,个人技术博客在国内最大的微软社区排名考前,曾多次在数据库大会、Teched、Ignite上分享经验。

嘉宾在分享的照片。

张丹

刘凯

李奇

Christina

宋卫东

宋沄剑

2.2 会议相关照片

本次的场地在微软的北京研发中心,忍不住要说会场很棒,不差钱就是好,干净、整齐、大方。

现场照片

大合照

沙龙很成功,感谢天善社区的工作人员,微软主办方的工作人员,IT大咖说直播的工作人员,大家都辛苦了!祝高质的沙龙,在北京越办越好,让无数有理想的年轻人,能开阔眼界,了解行业动态,推动知识的进步。

转载请注明出处:
http://blog.fens.me/meeting-mvp-20170723

打赏作者

在AWS上部署免费的Shiny应用

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-shiny-aws/

前言

无意中发现了AWS的提供免费的服务器资源,必须要大赞一下,写篇文章大大的推广。

Shiny是R语言中一个神级的应用,唯一的缺点就是不支持并发。所以,我们很多时候都是做本地Shiny应用,用于展示各种报表的效果。但有时候也需要把报表上传到互联网上,其他人也能看到。这样就需要一个互联网的解决方案,刚好AWS有了免费的服务器支持。简直是完美!!

目录

  1. Shiny是什么?
  2. 本地开发一个Shiny小应用
  3. 申请AWS免费服务器
  4. 在AWS上安装R语言环境
  5. 在AWS上安装Shiny Server
  6. 在AWS上部署自己的Shiny应用

1. Shiny是什么?

Shiny是RStudio公司开发的,一个用于R语言的Web应用程序框架,可以轻松开发交互式web应用,不需要了解HTML, CSS, JS等前端知识。

Shiny构建出应用的惊艳程度,远远超过了说明的文字。一定要学学,下面是一个Shiny小程序的截图。

Shiny的主页:http://shiny.rstudio.com/

我们安装Shiny可以直接从CRAN获取,通过一行R程序就可以安装了。


~ R
> install.packages("shiny")

2. 本地开发一个Shiny小应用

下面我们用Shiny开发一个小应用的实例,主要是为介绍Shiny的用法,包括网页的界面UI和后端程序,数据源使用R语言自带的一个数据集。

数据集是faithful,统计的是美国黄石国家公园的泉水(Old Faithful geyser) 喷发的持续时间和喷发等待时间 。

包括2列,eruptions为喷发持续时间,waiting为喷发的等待时间。


> head(faithful,20)
   eruptions waiting
1      3.600      79
2      1.800      54
3      3.333      74
4      2.283      62
5      4.533      85
6      2.883      55
7      4.700      88
8      3.600      85
9      1.950      51
10     4.350      85
11     1.833      54
12     3.917      84
13     4.200      78
14     1.750      47
15     4.700      83
16     2.167      52
17     1.750      62
18     4.800      84
19     1.600      52
20     4.250      79

开发环境所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

Shiny应用,分为定义了客户端程序ui.R,和服务器端程序server.R,这2个文件默认要求放同一个目录中。另外,我们还需要一个启动文件run.R,用于启动Shiny的应用。当然,如果在RStudio中开发,就不需要run.R的文件,直接点Shiny应用的启动按钮就行了。

开始创建项目目录和文件。


~ cd D:\workspace\dash
~ mkdir demo1
~ notepad run.R
~ cd demo1
~ notepad server.R
~ notepad ui.R

目录结构如下:


D:\workspace\dash
|--run.R
|--demo1
   |--server.R
   |--ui.R

编辑文件:run.R


library("shiny")
runApp("./demo1",host='127.0.0.1',port=3840)

编辑文件:server.R


library(shiny)

shinyServer(function(input, output) {

  # 输出到UI的main_plot
  output$main_plot <- renderPlot({
    
    # 直方图
    hist(faithful$eruptions,
         probability = TRUE,
         breaks = as.numeric(input$n_breaks),
         xlab = "持续时间",
         main = "喷发持续时间")
    
    # 是否显示individual_obs
    if (input$individual_obs) {
      rug(faithful$eruptions)
    }
    
    # 是否显示conditionalPanel
    if (input$density) {
      dens <- density(faithful$eruptions, adjust = input$bw_adjust)
      lines(dens, col = "blue")
    }
    
  })
})

编辑文件:ui.R


library(shiny)
shinyUI(bootstrapPage(
  
  headerPanel("第一个Shiny应用"),
  
  # 左侧布局
  sidebarPanel(
    
    # 下拉框
    selectInput(inputId = "n_breaks",label = "直方图中的分隔数",choices = c(10, 20, 35, 50),selected = 20),
    
    # 单选框
    checkboxInput(inputId = "individual_obs",label = strong("实际观察点"),value = FALSE),
    
    # 单选框
    checkboxInput(inputId = "density",label = strong("密度估计曲线"),value = FALSE)
  ),
  
  # 主布局
  mainPanel(
    plotOutput(outputId = "main_plot", height = "300px"),
    
    conditionalPanel(condition = "input.density == true",
                     sliderInput(inputId = "bw_adjust",label = "带宽调整", min = 0.2, max = 2, value = 1, step = 0.2)
    )
  )
))

启动Shiny应用时,本地的3840端口,就被打开了。


~ D:\workspace\dash>R -f run.r
R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R
'license()''licence()'
R.
'contributors()'
'citation()'RR
'demo()''help()'
'help.start()'HTML
'q()'R.

> library("shiny")
> runApp("./demo1",host='127.0.0.1',port=3840)

Listening on http://127.0.0.1:3840

我们可以用浏览器,来访问本地的服务 http://127.0.0.1:3840 。

这是一个标准的Web网页,如果我们操作网页上的表单元素,对应该的数据也会发生变化了。这样我们就完成了一个本的Shiny的小应用的开发,接下来就是把这个程序部署到AWS上面了。

3. 申请AWS免费服务器

AWS是Amazon提供的一个云服务平台,利用亚马逊 AWS,软件开发人员可以轻松购买计算、存储、数据库和其他基于 Internet 的服务来支持其应用程序。开发人员能够灵活选择任何开发平台或编程环境,以便于其尝试解决问题。由于开发人员只需按使用量付费,无需前期资本支出,亚马逊 AWS 是向最终用户交付计算资源、保存的数据和其他应用程序的一种最经济划算的方式。

AWS有一个免费的套餐,让互联网用户可以免费的使用他的资源,包括了服务器,数据库,CDN,负载均衡等服务。我们为了部署自己的Shiny应用,可以申请免费的服务器资源,先跑一下,看看效果。

首先,你需要注册一个AWS账号,然后登录进去,选择地区,申请免费的服务器。目前免费开放的区域不包括中国区,我选择了一个日本东京的服务器,Ubuntu Linux 64bit。

免费的资源,有一些限制,只能1核心CPU,1G内存,最大30G存储等。当然了,有免费的资源,已经是很棒的了,而且是AWS的服务。

接下来,就是做资源配置,然后就可以启动服务器了。

大概等3分钟,服务器启动完成,然后就可以通过SSH进行访问了。

AWS为了保证安全性,建议使用秘钥访问,而不是直接的用户名和密码的方式,所以你需要创建一个秘钥对,下载一个xx.pem的私钥,然后配到Putty或XShell等用于远程登录的客户端里。

然后,就可以用XShell连接,免费创建的EC2的服务器了。在这里,如果是Ubuntu的Linux服务器,用户名需要使用ubuntu,不能直接设置root。

4. 安装R语言环境

登录后,我们就可以安装R语言的环境了。安装过程比较简单,如果你需要装指定版本的R软件,那么你需要参考文章,R的历史版本安装。如果是安装默认版本的R语言环境,直接使用是apt-get命令就是最方便的。

服务器所使用的系统环境

  • Linux Ubuntu 16.04.2 LTS 64-bit
  • R: 3.2.3 x86_64-pc-linux-gnu (64-bit)

我们先更新apt的软件源,安装必备的系统软件,包括r-base和git,以及的Shiny应用的依赖库libcurl4-openssl-dev,libxml2-dev。如果你忘了装了,后面再装也都不影响。


~ sudo apt-get update
~ sudo apt-get install r-base
~ sudo apt-get install git
~ sudo apt-get install libcurl4-openssl-dev
~ sudo apt-get install libxml2-dev

接下来,让我们安装R语言的依赖包。这里有一个小技巧,就是在R语言的环境中安装第三方R包,并切换成root用户。


~ sudo -i  # 切换成root用户
~ R        # 启动R语言环境

我们需要预装的包,主要就是shiny,当然如果你还有依赖其他的包,都可以一块安装。安装时,R会让我们选择软件源,如果用https协议的镜像列表,你需要配置一下curl进行下载。你依然可以选择用http协议的镜像列表,选61之后,会出现http的镜像列表。

我们的服务器在Tokyo,所以也选择Tokyo的镜像列表,然后开始下载R的第三方软件包。


# 安装包
> install.packages("shiny")

Installing package into ‘/usr/local/lib/R/site-library’
(as ‘lib’ is unspecified)
--- Please select a CRAN mirror for use in this session ---
HTTPS CRAN mirror 

 1: 0-Cloud [https]                 2: Algeria [https]              
 3: Australia (Canberra) [https]    4: Australia (Melbourne) [https]
 5: Australia (Perth) [https]       6: Austria [https]              
25: France (Montpellier) [https]   26: France (Paris 2) [https]     
27: Germany (Göttingen) [https]    28: Germany (Münster) [https]    
29: Greece [https]                 30: Iceland [https]              
31: India [https]                  32: Indonesia (Jakarta) [https]  
33: Ireland [https]                34: Italy (Padua) [https]        
35: Japan (Tokyo) [https]          36: Malaysia [https]             
61: (HTTP mirrors)                 

Selection: 61

HTTP CRAN mirror 

 1: 0-Cloud                       2: Algeria                    
 3: Argentina (La Plata)          4: Australia (Canberra)       
 5: Austria                       6: Belgium (Antwerp)          
 7: Belgium (Ghent)               8: Brazil (BA)                
 9: Brazil (PR)                  10: Brazil (RJ)                
11: Brazil (SP 1)                12: Brazil (SP 2)              
13: Bulgaria                     14: Canada (BC)                
37: Hungary                      38: Iceland                    
39: India                        40: Iran                       
41: Ireland                      42: Italy (Milano)             
43: Italy (Padua)                44: Italy (Palermo)            
45: Japan (Tokyo)                46: Korea (Seoul 1)            
47: Korea (Seoul 2)              48: Korea (Ulsan)                          
89: USA (TX 1)                   90: Venezuela   

Selection: 45

顺利安装完R的依赖包,接下来就是要安装Shiny Server了。Shiny Server是一个单独的软件,目前还不支持通过apt-get或R本身进行安装,需要下载安装。

5. 安装Shiny Server

在开发时,我们其实只是用到了shiny的R语言第三方包,可以在本地的开发环境,运行Shiny的程序。那么,如果把一个Shiny放到公司内网或外网给其他人用呢?这时就是需要Shiny Server了。

Shiny Server提供一个稳定的Shiny应用在线的运行环境,Shiny Server分成开源版本和企业版本。开源版本,提供了基本的Shiny功能,数据、可视化、运行环境,对于个人来说已经足够用了,而且非常友好。企业版本,提供安全和管理功能添加到基本的开源版本中。RStudio公司出品,必属精品!!

Shiny Server是一个单独的软件,我们需要下载进行安装,下载地址:https://www.rstudio.com/products/shiny/shiny-server/

在Ubuntu的环境中,我们可以通过下面的命令,进行下载和安装。


~ sudo apt-get install gdebi-core
~ wget https://download3.rstudio.org/ubuntu-12.04/x86_64/shiny-server-1.5.3.838-amd64.deb
~ sudo gdebi shiny-server-1.5.3.838-amd64.deb

Reading package lists... Done
Building dependency tree        
Reading state information... Done
Reading state information... Done

Shiny Server
 Shiny Server is a server program from RStudio, Inc. that makes Shiny applications available over the web. Shiny is a web application framework for the R statistical computation language.
Do you want to install the software package? [y/N]:y
Selecting previously unselected package shiny-server.
(Reading database ... 63176 files and directories currently installed.)
Preparing to unpack shiny-server-1.5.3.838-amd64.deb ...
Unpacking shiny-server (1.5.3.838) ...
Setting up shiny-server (1.5.3.838) ...
Creating user shiny
Adding LANG to /etc/systemd/system/shiny-server.service, setting to en_US.UTF-8
Created symlink from /etc/systemd/system/multi-user.target.wants/shiny-server.service to /etc/systemd/system/shiny-server.service.
● shiny-server.service - ShinyServer
   Loaded: loaded (/etc/systemd/system/shiny-server.service; enabled; vendor preset: enabled)
   Active: active (running) since Thu 2017-07-06 07:40:24 UTC; 6ms ago
  Process: 25322 ExecStartPost=/bin/sleep 3 (code=exited, status=0/SUCCESS)
 Main PID: 25325 (shiny-server)
    Tasks: 12
   Memory: 35.4M
      CPU: 411ms
   CGroup: /system.slice/shiny-server.service
           ├─25321 /bin/bash -c /opt/shiny-server/bin/shiny-server --pidfile=/var/run/shiny-server.pid >> /var/log...
           └─25325 /opt/shiny-server/ext/node/bin/shiny-server /opt/shiny-server/lib/main.js --pidfile=/var/run/sh...

Jul 06 07:40:21 ip-172-31-31-236 systemd[1]: Starting ShinyServer...
Jul 06 07:40:24 ip-172-31-31-236 systemd[1]: shiny-server.service: Supervising process 25325 which is not our...xits.
Jul 06 07:40:24 ip-172-31-31-236 systemd[1]: Started ShinyServer.
Hint: Some lines were ellipsized, use -l to show in full.

运行完安装的命令,默认情况Shiny Server会被直接启动起来,其中3838的端口被打开。

检查启动端口


~ netstat -nlpt
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      -               
tcp        0      0 0.0.0.0:3838            0.0.0.0:*               LISTEN      -               
tcp6       0      0 :::22                   :::*                    LISTEN      -               

我们可以通过浏览器,直接基于IP和端口进行Shiny Server的访问了。

打开的页面是默认的Shiny Server的网页,如果和上面的截图一样,说明你的Shiny Server安装成功了。

提醒一下,AWS的EC2的主机,一定要配置网络访问策略,打开3838端口,允许外部访问,不然一直都是无法访问此网站的错误。

6. 部署自己的Shiny应用

还差最后一步,就是把我们自己开发的Shiny应用,部署到AWS的EC2上面。代码上传的过程,我们可以基于github来完成。

操作过程如下:

  1. 在github上面,新建一个项目,名为shiny-demo。
  2. 把本地开发的代码,上传到github的shiny-demo项目中。
  3. 在AWS的EC2上,从github的shiny-demo项目中,下载代码。
  4. 在AWS的EC2上,修改Shiny Server的配置,加载项目代码。
  5. 在AWS的EC2上,重启Shiny Server,发现错误。
  6. 在AWS的EC2上,查看日志修复错误。
  7. 在浏览器上访问,自己的Shiny应用。

6.1. 在github上面创建项目,名为shiny-demo。

github操作过程省略。项目地址 https://github.com/bsspirit/shiny-demo

6.2 把本地开发的代码,上传到github的shiny-demo项目中。

切换到本地开发的环境。


~ cd d:\workspace\dash
~ git init
~ git add .
~ git commit -m 'init'
~ git remote add origin https://github.com/bsspirit/shiny-demo.git
~ git push -u origin master  

6.3 在AWS的EC2上,从github的shiny-demo项目中,下载代码。

切换到服务器环境。


# 查看当前目录
~ pwd
/home/ubuntu

# 下载github项目
~ git clone https://github.com/bsspirit/shiny-demo
Cloning into 'shiny-demo'...
remote: Counting objects: 12, done.
remote: Compressing objects: 100% (11/11), done.
remote: Total 12 (delta 0), reused 12 (delta 0), pack-reused 0
Unpacking objects: 100% (12/12), done.
Checking connectivity... done.

# 查看项目文件
~ cd shiny-demo
~ tree
.
├── demo1
│   ├── server.R
│   └── ui.R
├── README.md
└── run.r

1 directory, 4 files

6.4 在AWS的EC2上,修改Shiny Server的配置,加载项目代码。

编辑shiny-server的配置文件shiny-server.conf。


~ sudo vi /etc/shiny-server/shiny-server.conf

# Instruct Shiny Server to run applications as the user "shiny"
run_as shiny;

# Define a server that listens on port 3838
server {
  listen 3838;

  # Define a location at the base URL
  location / {

    # Host the directory of Shiny Apps stored in this directory
    site_dir /srv/shiny-server;

    # Log all Shiny output to files in this directory
    log_dir /var/log/shiny-server;

    # When a user visits the base URL rather than a particular application,
    # an index of the applications available in this directory will be shown.
    directory_index on;
  }

  # 新增加指向github的代码位置
  location /demo1 {
    app_dir /home/ubuntu/shiny-demo/demo1;
    log_dir /var/log/shiny-server/demo1;
  }
}

增加 location /demo1 { } 的配置部分,用来把自己的Shiny的应用,在Shiny Server中进行注册。当然,对于不熟悉Shiny Server的配置的人,可以参考Shiny Server的管理员使用手册 http://docs.rstudio.com/shiny-server/

6.5 在AWS的EC2上,重启Shiny Server,发现错误。

重启Shiny Server,虽然只是重启,但经常出现错误。


~ sudo service shiny-server restart

# 对于Ubuntu 15.04+的系统,推荐用下面的命令。
~ sudo systemctl restart shiny-server

重启后,就可以在浏览器上,访问自己的Shiny应用了。

打开以后,出现了一个错误页面,这种情况太正常了。会出现各种各样的异常的情况,然后就需要我们反复进行调试了。

6.6 在AWS的EC2上,查看日志,修复错误。

主要的调试的方法,就是检查Shiny Server的日志。日志在设置上,有一个很大的坑,我也是在挠头搞了3个小时后才发现的。

由于Shiny Server为了保证性能,所以非敏感性的错误日志被设置了自动清除,每当你出现了错误,要去看日志定位问题的时候,这个日志就刚好被自动清除了。坑很大!!都开始怀疑人生了。

所以,你在调试时需要修改一个参数,保证日志不会被自动清除。

修改文件shiny-server.conf


~ sudo vi /etc/shiny-server/shiny-server.conf

run_as shiny;

access_log /var/log/shiny-server/access.log default;  # 增加记录访问
preserve_logs true;                                   # 禁止自动清除日志

# Define a server that listens on port 3838
server {
  listen 3838;

# 省略
}

再次重启Shiny Server。


~ sudo systemctl restart shiny-server

发现问题,检查日志,然后,我们对应日志的解决问题。


~ sudo cat /var/log/shiny-server/demo1/demo1-shiny-20170706-081120-42749.log 

Listening on http://127.0.0.1:42749
Warning: Error in if: argument is of length zero
Stack trace (innermost first):
    101: density.default
    100: density
     99: renderPlot [/home/ubuntu/shiny-demo/demo1/server.R#22]
     89: 
     78: plotObj
     77: origRenderFunc
     76: output$main_plot
      1: runApp

很多情况下,诡异的错误都是缺少第三方包造成的,当你程序中使用了第三包的时候,一直要记得在Shiny的服务器上面安装好。记得用root用户!!

总结一下,我们利用免费的AWS的EC2服务器资源,发布了自己的Shiny应用,是多么的开心啊!这样以后就可以大胆地去开发自己喜欢的Shiny应用了,当然不只是Shiny应用,你可以利用AWS的免费资源,做更多的事情。老司机,都明白的!!

原本是准备把一个基于赌场原型的Shiny应用放到互联网,考虑服务器位置和选型的问题,无意中发现了AWS的免费资源,这样就有了这样的一篇Shiny与AWS结合的文章。下一篇,要不要分析一下赌场的模型呢。

转载请注明出处:
http://blog.fens.me/r-shiny-aws/

打赏作者

2017猎奇金融大数据:用R语言开始量化投资

跨界知识聚会系列文章,“知识是用来分享和传承的”,各种会议、论坛、沙龙都是分享知识的绝佳场所。我也有幸作为演讲嘉宾参加了一些国内的大型会议,向大家展示我所做的一些成果。从听众到演讲感觉是不一样的,把知识分享出来,你才能收获更多。

关于作者

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog:http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/meeting-cda-20170521

前言

很高兴能够参加由CDA主办的数据分析师线下沙龙的活动,虽然活动规模不大,但是场子很棒,氛围很好。刚好这次沙龙是金融大数据的主题,也是为了给我的新书《R的极客理想-量化投资篇》预热,给大家分享一下R语言在量化投资领域的应用。

本次所分享的内容为我的新书开篇内容,干货多多,错过沙龙的同学,可以在CDA的网站上找到分享的内容。

目录

  1. 我的演讲主题:用R语言开始量化投资
  2. 会议体验和照片分享

1. 我的演讲主题:用R语言开始量化投资

用R语言开始量化投资,PPT下载,主要内容来自我的一篇博文:用R语言开始量化投资

分享主题的目录大纲如下:

  1. 为什么用R语言?
  2. 跨界结合的思维模式
  3. R语言量化工具包
  4. 量化策略实战应用
  5. 有理想的极客

分享结束后,和几个现场的朋友,在聊R语言的大方向,大家都觉得R语言有很大的机会,只是R语言应该如何落地呢?我觉得有很多的点和方向可以做。比如:培训教育,用R来替换SAS,R的企业服务,R的SAAS的个人服务等。

我就在致力于推动R语言在中国金融领域的发展,让R可以给更多的用户使用,培养出更多的数据分析师。也希望让我们中国人的技术能够走出去到世界的舞台。希望多能认识志同道合的朋友,一起做一些事情。

2. 会议体验和照片分享

本次由4个主题组成,主要介绍了金融大数据在国内的应用情况。本次的场地是由科技寺提供的,忍不住还要再说一够场面很棒,如果再能配上咖啡就更好了。

本次猎奇金融大数据专场4位嘉宾:

鲁四海,主题:大数据风控。
中国新一代IT产业推进联盟技术分委会秘书长、首席数据官联盟发起人。主要研究方向为大数据,参与编写了《影响中国大数据产业进程100人》,在中国新IT联盟、北达软讲授大数据技术应用课程。

张丹,主题:如何用R语言开始量化投资。
《R的极客理想》系列图书作者,前况客创始人兼CTO。10年IT编程背景,精通R ,Java, Nodejs 编程,获得10项SUN及IBM技术认证。

于洋,主题:金融大数据运营增长创新案例。
TalkingData增长部门总监,曾加入金山从事游戏数据分析及运营,2012年加入TalkingData,历任游戏业务咨询总监,金融业务咨询总监,现从事在零售,金融,航旅等方向的数据营销,运营及增长创新业务。

李金霞,主题:实战案例:数据驱动下的互联网营销。
神策数据数据分析师,曾就职于民生银行、百度人才、飞信,负责数据处理相关工作。2016年加入神策数据,主导客户包括纷享销客、网易七鱼、ofo、拉钩云人事、多盟等。

嘉宾在分享的照片。

曹鑫,主持人。

张丹,《R的极客理想》系列图书作者

鲁四海,

于洋,

李金霞,美女分析师

2.2 会议相关照片

本次分享的场地,很有特色,宽敞、明亮、很有创意、很舒服,像是咖啡厅,开放式的办公环境,很棒!

很意外地获得了一个CDA给的奖杯,收藏一下。

沙龙很成功,感谢工作人员的辛苦劳动组织。在北京以数据为主题的沙龙,并不是太多,祝CDA的活动能一直坚持品质,越办越好!

转载请注明出处:
http://blog.fens.me/meeting-cda-20170521

打赏作者

用R语言开始量化投资

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-quant-start/

前言

做数据分析的朋友,一定知道R语言。R语言是一门统计语言,在数据分析领域优势是非常明显的。金融本身是玩数据行业,R的最大的优势就是数据分析,所以把R语言与金融结合,用R来做量化投资的策略,真的很配,不仅顺手而且方便,用了你就会知道。

本文以“用R语言开始量化投资”做为新书《R的极客理想-量化投资篇》的开篇,主要强调了R语言在量化投资领域有着广阔的应用场景,而且是重要的量化投资工具。

公开课:Hellobi Live | 5月23日如何用R语言开始量化投资

目录

  1. 为什么用R语言?
  2. 跨界结合的思维模式
  3. R语言量化工具包
  4. 量化策略实战应用
  5. 有理想的极客

1. 为什么用R语言?

R语言是一门面向数据的编程语言,早期只是在统计领域,被统计学家所使用。

近年来随着大数据技术的发展,以及R语言自身生态的快速壮大,R语言已经不仅在统计领域,在各大行业领域中都能看到R语言的身影,包括了互联网,数据科学,人工智能,机器学习,生物医疗,游戏,电子商务,全球地理科学,数据可视化等等。

下图是R语言的任务列表,这些任务都是面向具体业务的。截图不全,请大家去R官方网站,查看完整的任务列表。

从R语言的任务列表,我们就能明显看出,R语言和其他编程语言的区别。R语言第三方包所提供的支持,都是对于各种行业的数据操作和算法的支持,而不仅仅纯IT系统开发功能的支持。

R语言不仅能把数据分析做好,而且能够让我们能够有更多地思考,通过数据连接到我们每个人的日常生活。比如,我们去超市购物,你购买的东西会记录在你的购物小票中,如果把这些购物小票都收集起来,通过Apriori关联规则的频繁项集算法,就可以分析出自己的购物习惯。

我们每天都会收到各种推销的骚扰电话,有时候是卖房的,有时候是银行贷款,有时候是股票推荐,有时候是代开发票,有的是猜猜我是谁,处处都体现了中国的国情。那么我们可以收集自己通话记录,通过电话号码、号码注册位置、通话时长来分析一下,哪些是有用通话,哪些是浪费时间的通话,从而计算出我们每一天会浪费多少时间,通过Bayes算法来把有效通话和无效通话进行二元分类,从而阻止骚扰电话的入侵。

如果我们不仅能够收集自己的通话记录,把亲戚朋友的或更多人的通话记录都收集起来,组建一个数据库。再把统计出来的骚扰电话统一标记,做成黑名单,然后把黑名单公开出来,就可以让更多的人面受骚扰电话的影响。

人们的衣食住行都会产生数据,产生数据的地方,就需要做数据分析。通过数据分析,提高生活的效率,为我们节约宝贵的个人时间。

在人类社会中,除了衣食住行的基本需求外,更多的是对钱的需求。我们每天都会跟钱打交道,会有消费的需求,月底会有工资收入,当收入大于消费,资金积累到一定阶段的时候,我们就会有投资的需求。中国人的投资一般就几种,买房,买黄金,买股票,买保险,买理财。投资时,大部分人是不理性的,心血来潮就买了,也不仔细观察行情,买完就被套住,像 “中国大妈抢购黄金”,“中国大妈是救市的主力军” 都一度被新闻媒体热炒。

在金融市场中最不缺的就是机会,不管投资什么,如果能在交易的时候能多思考一下,说不定结果就会不样。运用我们数据分析的知识,和对于金融市场规则的理解,通过R语言进行数据分析,抓住机会,让我们把辛辛苦苦赚到的钱保值和增值。

2. 跨界结合的思维模式

R语言与其他编程语言最大不同在于,R语言是面向数据的,这一点很重要,甚至影响了思维模式。

我写了10多年的JAVA程序,程序员思路在我的脑子里根深地固。我习惯用于面向对象思想来建模,把世界中的物体、行为、连接都用面向对象的方法来表达。我也习惯了IT项目,从架构设计到开发的自上而下的设计思路,或完全由需求驱动的敏捷开发,为业务随需而变的的开发路径。作为程序员,我有理想,我自认为技术能改变世界。这一切都是程序化思维在影响着我。如果你还不熟悉啥是面向对象,请参考《R的极客理想-高级开发篇》第四章面向对象编程。

后来,当我接触了R语言,通过另一扇门理解世界的时候,我发现世界是不一样的。在没有程序的世界里,你可以通过文字来表达你的做事的方法,你可以感性地认识世界,你也可以让数据来说出这个世界意义。你可以天天看新闻联播,了解国家大事;也可以看微博、朋友圈的爆料,及时了解身边的消息。这并不是程序员的思维,而大众化的社会。这个社会里,程序员只是小众。

改变世界的方法,除了技术还有别的,比如,政策、资本、市场、法律、人事等,从公司运作的层面看,似乎哪个都比技术更重要。也许程序员更不关心这些,但面对市场时,再牛技术也会被其他因素所制约。

我经历过创业,一个很深刻的教训就是,要让自己跳出原有的思维定式,通过多维的视角看世界、看自己。通过R语言,帮我打开了通过数据看世界的窗口。我的能力提升不再是,如何把程序把写得多得漂亮,在时间复杂度上用O(log(N))解决O(N^2)的问题,而变成了怎么收集数据,怎么提高数据质量,用于解决实际的业务问题。当然,作为程序员的职业强迫性,我也会要求自己熬夜一晚上把50行代码优化成40行。

问题被转化了,术业要有专攻,但作为一个有理想的极客,全面掌握跨领域的知识才是我们的目标。我创业时,经常被投资人问到,做量化投资的项目有多难?招几个金融背景的,再招几个IT背景的,捣鼓个项目,很快就做出来了。其实不然,不同背景的人是很难交流和沟通,尤其是金融和IT,一种是封闭不愿意分享,一种是开放毫无保留;一种是先把话说出来,一种是先把事情做起来;一种是所有人都要为我服务,一种是只专注于自己的兴趣。所以,如果没有能够跨界通吃的人,是做不好量化的项目的。

我们就要立志做个跨着学科的人,这才是最核心的点,是不可被替代的。从IT技术出发,你需要扎实的编程功底架构思想,科学的项目管理方法,严谨的产品设计逻辑;你还需要统计、数学等基础学科的知识,数据挖掘与机器学习的数据处理经验;最重要的,你要能结合业务,不管是量化投资或其他的领域,理解市场的规则。

听起来很难,而且是真的很难!虽然很难,但不光是对你,对所有人都是这么难。但是只要能坚持的走下来,一定能通过知识改变命运的。

3. R语言量化工具包

做量化投资,R语言的优势在哪?R语言可以帮助我们从多种维度去理解量化投资。

  • R语言本身就是我们需要掌握的IT的技术,是一个需要编程的技术活,但极大的降低了对编程的要求,短短20-30行R语言代码,已经能干很多事情了。
  • R语言是面向数据的,有方便数据处理操作,对于数学、统计等基础学科有丰富的函数支持,同时提供多种数据挖掘和机器学习的算法库,让我们可以直接使用。
  • 在量化领域更是R语言的强项,有针对投资研究的包,有做回测分析的包,有做金融产品定价的包,有做投资组合优化的包,还有风险管理的包,涵盖了量化投资的方方面面,只是有些包的使用要针对中国市场特点进行改进和优化。

R语言为量化投资提供了丰富的工具包,我做了分类列在下面。再也没有哪种语言会做到这种的支持了。R包,投资研究包,回测分析包,金融产品定价包,投资组合优化包,风险管理包,涵盖了量化投资的方方面面。

完整的量化投资工具包,请参考文章R语言量化投资常用包总结。在《R的极客理想》系列图书的3本书中,分别对于这些包做了介绍。请大家对照包名,进行查看和使用。

4. 量化策略实战应用

利用R语言的便利性,我们可以很容易的通过上面介绍的这些工具包,做一个交易模型。构建一个简单的投资策略,甚至都不需要有太多的代码。

接下来,我就举例说明一下,怎么把R语言提供的程序包合在一起使用。按照下面的步骤做一个简单的交易策略,基于移动平均线MACD,针对全球指数的投资方案。如果你还是金融新手,不了解MACD策略,那么请请参考《R的极客理想-高级开发篇》书中,2.3节二条均线打天下。

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

下面是一个简化的量化策略的研究过程,分为如下的6步进行。

  1. 用quantmod包下载数据。
  2. 用zoo包和xts包进行数据格式标准化。
  3. 用TTR包进行模型计算。
  4. 用PerformanceAnalytics包进行指标风险。
  5. 用ggplot2包进行可视化输出。
  6. 最后,进行结果分析。

首先,我们要获取数据,个人玩可以通过互联网免费下载数据,专业机构通常都是买专业数据库。这里我们通过quantmod包,从Yahoo财经下载数据的。

我选择了全球的5个市场的指数进行比较,代码和名称对应关系。

指数名称 指数代码(Yahoo财经代码) 简称
标普500 ^GSPC GSPC
日经225 ^N225 N225
恒生指数 ^HSI HSI
富时新加坡STI ^STI STI
上证综指 000001.SS SSE

下面通过R语言代码,我们来完成这个交易策略模型的构建。当然,这里只是为了说明整个过程,给大家一个直观的感觉,这里会省略对于策略的细节处理。


# 加载程序库
> library(quantmod)
> library(TTR)
> library(PerformanceAnalytics)
> library(ggplot2)
> library(scales)

# 从Yahoo财经下载各全球指数数据
> options(stringsAsFactors = FALSE) 
> symbols<-c("^GSPC","^N225","^HSI","^STI","000001.SS")
> suppressWarnings(getSymbols(symbols,src = "yahoo",from="2012-01-01"))
[1] "GSPC"      "N225"      "HSI"       "STI"       "000001.SS"

# 取指数价格调整后的数据,合并数据集
> df<-merge(GSPC$GSPC.Adjusted,HSI$HSI.Adjusted,N225$N225.Adjusted,STI$STI.Adjusted,`000001.SS`$`000001.SS.Adjusted`)

# 对列重命名
> names(df)<-c("GSPC","HSI","N225","STI","SSE")

接下来,让我看数据是什么样子的,并画出全球指数。


# 查看数据前6行
> head(df)
              GSPC      HSI    N225     STI     SSE
2012-01-03 1277.06 18877.41      NA 2688.36      NA
2012-01-04 1277.30 18727.31 8560.11 2711.02 2169.39
2012-01-05 1281.06 18813.41 8488.71 2713.02 2148.45
2012-01-06 1277.81 18593.06 8390.35 2715.59 2163.40
2012-01-09 1280.70 18865.72      NA 2691.28 2225.89
2012-01-10 1292.08 19004.28 8422.26 2719.83 2285.74

# 查看数据最后6行
> tail(df)
              GSPC      HSI     N225     STI     SSE
2017-02-24 2367.34 23965.70 19283.54 3117.03 3253.43
2017-02-27 2369.73 23925.05 19107.47 3108.62 3228.66
2017-02-28 2363.64 23740.73 19118.99 3096.61 3241.73
2017-03-01 2395.96 23776.49 19393.54 3122.77 3246.93
2017-03-02 2381.92 23728.07 19564.80 3136.48 3230.03
2017-03-03 2383.12 23552.72 19469.17 3122.34 3218.31

# 查看数据类型,为xts
> class(df)
[1] "xts" "zoo"

整个数据集是从2012年01月03日到2017年03月03日之间数据,数据为xts类型,xts类型是R语言中专用的时间序列类型。 关于xts的详细介绍,可以参考《R的极客理想-工具篇》书中,2.2节可扩展的时间序列xts。

画出全球指数,曲线图。

由于各国指数成立时间不同,成份股也不同,所以指数值有的很大有的相对比较小,我们不能用指数大小来判断好坏。 通常情况下,我们会转换成收益率进行比较,通过收益率进行度量后,这样所有的标的都是在同一个维度了。

画出全球指数的每日累计收益率,曲线图。

收益率越高,说明指数在这期间是表现越多的,我们越应该去投资。上图中日经225(N225)指数大幅超越了其他指数,中国的上证综指(SSE)一起一落波动非常大,标普500(GSPC)走势稳健。

计算指数的平均年化收益率,如果我们把钱一直投资在这些看指数上面,那么我们每年的平均回报是多少呢?


> Return.annualized(ret_df)
                       GSPC       HSI      N225        STI        SSE
Annualized Return 0.1133813 0.0619811 0.1927681 0.03696703 0.04817027

这里日经指数(N225)年化回报率是最高的,有每年平均有19.28%的年化收益率,与图1-3的累计收益率走势相符。 而中国的上证综指(SSE)仅有4.82%的年化收益率,回报不算高,但波动太大了。 综合来看,标普500(GSPC)其实是投资的首选,11.34%年化收益率,平均波动率也不是太高,所以风险和收益都是相对不错的。

接下来,我们构建一个简单的MACD模型,通过MACD策略再对上面5个指数构建交易策略。


> # MACD 策略模型
> MACD<-function(dt,n=30){ #代码省略
> }

# MACD策略,年化收益率
> lapply(df, function(col) MACD(col,30))
           GSPC       HSI      N225        STI       SSE
close 0.2137435 0.2406476 0.2261996 0.01869112 0.2817241

我们写了一个MACD的策略函数,就相当于是建模的过程,函数的输出为策略的收益率。 然后,我们把指数数据传给MACD()函数,经过计算输出策略收益率。 最后,把策略收益率与纯指数率,放到一起来进行对比。

策略 GSPC HSI N225 STI SSE
指数收益 0.1133813 0.0619811 0.1927681 0.03696703 0.04817027
策略收益 0.2137435 0.2406476 0.2261996 0.01869112 0.2817241

我们可以很明显的看出,用一根均线的MACD策略,平均年收益率会大幅优于纯指数的收益率,如果我们这样交易就可以赚到更多的钱。 其实,这就是量化投资的思想,从数据中发现规律。 可能上面的过程和代码,会让你觉得很迷惑,怎么就能赚到钱了?别着急,本节只是本书的开篇,等你仔细阅读了全书,你就能领悟到这里的玄机了。

一共40行左右代码,完成了很多的事情。 如果要把整个操作都细分列举出来,包括了数据采集,数据清洗,数据标准化,指标计算,数据建模,历史回测,投资组合构建,组合优化,计算结果评价,数据可视化等组成部分。

要搭建一套量化交易的系统,主要就是完成这些部分。对于个人玩家来说,按照上面R语言代码的思路,就已经可以实现了。 如果你想做的更好,不仅是个人玩,通过成立公司把系统做大做强,为更多的用户提供量化服务,那么你还需要有一整套的平台架构方案,同时配合你要做的金融业务。

5. 有理想的极客

本文是新书《R的极客理想-量化投资篇》的开篇内容,希望大家跟着我的思路,通过R语言入手,体会R语言建模的乐趣,并真正地把技术变现。 我认为R语言是非常好的一门语言,从量化投资的角度,我会一直推动R语言在中国的发展,当成一项事业来做。 同时,本书也会译成英文版在全球发行,让中国的技术走出去。加油!!

R语言只是一门计算机语言技术,不能独自承担改写历史的重任,但R语言确实给了我们很大的想像空间,让我们能动手去了解这个世界的规律,找到无穷无尽的交叉点,创造出新的帝国。

如果你和我一样,都能站在这个角度来学习和使用R语言,那么我们一定可以成为并肩向前的同路人。

转载请注明出处:
http://blog.fens.me/r-quant-start/

打赏作者