• 粉丝日志首页

2017WOT全球软件开发技术峰会:面向数据的思维模式和R语言编程

跨界知识聚会系列文章,“知识是用来分享和传承的”,各种会议、论坛、沙龙都是分享知识的绝佳场所。我也有幸作为演讲嘉宾参加了一些国内的大型会议,向大家展示我所做的一些成果。从听众到演讲感觉是不一样的,把知识分享出来,你才能收获更多。

关于作者

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog:http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/meeting-wot-20171202

前言

第三次参加WOT的峰会了,这次来到深圳进行分享,蓝蓝的天空,暖暖的天气,真是宜居的城市。

在本次大会上,我主要介绍的是面向数据的思维模式和R语言的编程技巧。谈到思维模式,就是一种自我进化的方法,当你在一味的追求技术的过程中,积累了很多年,遇到了突破不了的瓶颈。你就需要停下来,想一想,是不是要换个角度看问题。

目录

  1. 我的演讲主题:面向数据的思维模式和R语言编程
  2. 会议体验和照片分享

1. 我的演讲主题:面向数据的思维模式和R语言编程

首先,感谢51cto主办方的邀请,并且让我担当“编程语言与框架”分会场的出品人。我本次分享的主题为:面向数据的思维模式和R语言编程,PPT下载,主要内容来自我的2篇文篇:用R语言把数据玩出花样 和 51CTO采访稿 如何用R语言打开面向数据的思维模式

分享主题的目录大纲如下:

  1. 面向数据的思维模式
  2. 金融理论
  3. R语言进行数据处理

本此分析主要是从数据的角度切入,比较程序员思维与数据分析师思维的差异,以及思考方式的区别。在数据已经积累有一定数据量后,怎么让数据产生价值,如何设计数据产品,就是一个非常值得我们思考的问题。数据,不仅仅只存在于互联网行业,数据存在于各行各业。一旦用数据的思维去思考,你就能够发现,无数的机会在等着你。

我主要是研究量化投资,直白一点说,就是对金融数据进行分析,建立数据模型,找到赚钱的机会。同时,我也在致力于推动R语言在中国金融领域的发展,让R可以给更多的用户使用,培养出更多的数据分析师。也希望让我们中国人的技术能够走出去到世界的舞台。希望多能认识志同道合的朋友,一起做一些事情。

2. 会议体验和照片分享

会议的主页:http://wot.51cto.com/act/2017/development/

本次wot的大会,由9个分会场组成,我是在编程语言与框架会场。本会场的主题是,更多新兴的编程语言、框架和工具改变着开发者的工作方式,并带来更多的可能。如何在日新月异的潮流下理智地选择编程语言,确保框架的稳健和成熟?本专场将分享来自最值得关注的语言和框架的最佳实践。

我的介绍和照片分享。

2.2 会议相关照片

本次的场地在 在深圳中洲万豪酒店,五星级,市中心,高楼大厦林立,会场气派。

这是我,专业照相就是帅。

还是我,签名赠书。

签名赠书。

与谢佳标老师,互赚新书。

大会现场的同学们,1000+人次。

蓝天,白云,大高楼

晚宴,英雄会。

主办方的小伙伴辛苦啦!!获得嘉宾和听众的一致好评!

转载请注明出处:
http://blog.fens.me/meeting-wot-20171202

打赏作者

图书出版《R的极客理想-量化投资篇》

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-book3/

前言

终于等到R的极客理想系列,第三本《R的极客理想-量化投资篇》一书出版了。写书不仅是一个漫长的过程,更是知识的浓缩和再精华的过程;写书不仅把自己会的东西记录下来,还要站在读者的角度,让其他人也能看得懂;写书不同于写博客,不仅要保证超过5遍以上的审阅,还要遵守出版的各种规则,包括格式、文字、目录、图片,公式,代码,引用….

写书不是一件容易的事情,这是R的极客理想系列最后一本图书。希望更多的朋友都能静心下来,写本自己的书。尊重知识,就是尊重你的未来。

目录

  1. 写书体验
  2. 为什么要写这本书
  3. 读者对象
  4. 如何阅读本书
  5. 致谢

1. 写书体验

本书是我写的“R的极客理想”系列丛书的第三本,是R语言与金融量化投资领域结合的一本书,本书的主要写作目标就是把R语言的技术和实际的金融量化案例结合起来,让读者能切身的体会把知识变成真正的生产力。

本书撰写花了很长的时间才得以完成,因本书涉猎广泛,包括了大量地跨学科的知识,用通俗易懂的语言描述出来,并让读者更容易地理解并非易事,以致于我自己在写作过程中,有过数次想放弃的冲动。这本书最终完成,都源于每次看到读者在我博客中的留言,看到大家的对于知识的期待和对于我本人的鼓励,这些都是我把这项艰苦的事业完成,源源不断的动力和鞭策。有的同学开玩笑地留言说,“集齐全套图书,就可以召唤神龙了”。我真的非常感谢读者,对于图书的高度肯定和对我不断的支持。

在本书的写作过程中,我经历了一次创业的洗礼,体验了人生的大起和大落,这段特殊的经历也让我有了新目标和方向。每当我回忆整个的创业过程,都觉得自己太年轻了。光有满腔的热情和技术,只能让我把事情做起来,但是经验和阅历的不足,不能支撑我成为一个成功的创业者。天时,地利,人和,缺一不可。

图书介绍的网站http://fens.me/book,介绍了本书的基本情况,包括序、前方、目录、勘误、代码、试读、封面、交流等几个方面内容,读者有任何问题,都可以在网站中留言,并得到我的回复。同时,可以加QQ群:383275651,和更多的网友进行交流。网站还有视频专区(http://fens.me/video),提供我录制的各种视频课程,包括 R, Nodejs, Hadoop, 金融量化投资 等,视频收入仅用于网站的运营成本。

前两本上市后不仅再国内取得了不俗的成绩,获得了良好的口碑,而且英文版被美国知名的出版集团CRC引进,在北美市场也获得了读者的热捧,本书的英文版和繁体版随后也会在美国和中国台湾发行。

最后附上购买链接,各大网站都能买到,建议先去比比价:互动出版社京东当当亚马逊

当然,如果你需要一本签名的书,可以联系我订购,但是成本有点高,图书原价+货到付款;也可以带着书,到各种我参加的分享会来找我,我每年有不少的分享活动

2. 为什么要写这本书

本书撰写的一个主要思路是从IT人的角度,通过技术来切入金融市场,进行量化投资。发挥IT人的专注学习、乐于分享的精神,借助互联网快速传播知识,打破传统的金融壁垒。发挥“极客”的创造力,让知识变成生产力,让更多的有理想的IT人,能够有机会进入金融行业,推动金融行业的改革和创新。

但这不是一本简单易懂的书,因为量化投资是跨学科的领域。你需要有多学科的知识储备,才能胜任量化投资的工作。而本书所涉及的相关的内容,可能需要多本书籍的相关知识支撑才能描述完成。

阅读本书,不但需要你有R语言的使用经验,更需要有对金融市场知识的理解。本书主要介绍了三部分内容,涵盖金融市场,统计知识和IT技术。

  • 金融市场,包括了中国的金融二级市场环境的介绍、交易工具的使用、金融产品的交易规则、国内机构投研思路、策略和回测、基金会计等金融行业的基础知识。
  • 统计知识,包括了时间序列、一元线性回归、多元线性回归、自回归等统计和计量的模型算法。
  • IT技术,就是R语言相关的编程技术,金融量化程序包的使用,金融数据处理,金融数据模型的构建,量化策略的实现思路,R语言代码的编写等。

同时,本书使用了很多的真实案例,以中国实际的金融市场为背景,你会感觉到市场所带来的波动,国家宏观政策对于市场的影响,散户思维与专业投资者的差异,量化思路与主观思路对于市场的不同理解。

本书是我在实际投资研究中的总结,从金融理论模型,到市场特征检验,再到数学公式,R语言建模,再到历史数据回测,会计资产核算,最后进行实盘交易。通过R语言,可以很简单地实现我们脑子中的一个投资想法。类似的投资想法其实谁都有,利用IT人的技术优势,可以真正地与实际操作结合起来。

本书所涉及的金融产品,包括了股票、期货、债券、基金、现金管理等,跨越多个金融市场多种金融标的物。交易模型和交易策略,有基于市场技术指标的量价策略,有基于统计理论的套利策略,有基于金融产品规则的事件性策略;有针对全市场扫描的选股策略,也有高频交易的择时策略。相信本书,会另你感受到金融市场的魅力,以及技术优势能给我们带来的价值。

要想深入理解本书的每一篇的内容,可能你需要像我一样,不仅有技术的积累,还要真正地去金融市场做做交易,多和行业内的人进行沟通,不断地学习和思考。

让IT技术,提高金融的效率。

传统的交易员,都是凭借多年的交易训练,人工的每日盯盘,观察市场的变化。一个好的交易员,可以同时观测几个金融市场的几十个交易品种。随着金融产品的发展,股票市场已经达到3000多只股票,债券市场达到3000多只债券,公墓基金市场达到了6000多只基金,还有多种的金融衍生品,大量金融产品的发展,已经不是能依靠个人之力去消化和分析了。

通过计算机在全市场进行扫面,发现不合理的定价和交易机会,可以极大的提高交易员效率。一种理想化的设计,让程序来为我们交易赚钱,我们就可以去做自己喜欢的事情了。让技术变现,解放我们的生活。

本书中的原创观点和方法,都是基于理论研究在实践中的经验所得。实际上,长久以来我也在找这样的一本书,能够把书本上的理论模型与实际业务相结合,但并没有找到,或者并没有符合中国市场的实际案例应用,所以只能自己动手写一本。本书也有点像是自己的笔记,我也会经常翻翻,让自己的头脑始终保持清晰思路。

3. 读者对象

本书适合以下所有R语言工作者:

  • R语言的学习者和使用者(必读)
  • 金融宽客(Quant)(必读)
  • 计算机背景的金融量化爱好者(必读)
  • 数据分析背景的金融方向数据科学家(必读)
  • 统计背景的金融科研工作者
  • 金融行业从业者,券商研究员、分析师、基金经理
  • 回归中国市场的海外金融量化从业人员
  • 金融、统计、数据科学专业的学生

4. 如何阅读本书

本书分为三个部分,六个章节,每一个章节都是一块大的知识体系。

  • 第一部分是金融市场与金融理论(第1~2章),从了解金融开始,建立对金融认识的基本思路。
  • 第二部分是R语言数据处理与高性能计算(第3~4章),详细介绍了R语言进行数据处理的必备工具和使用方法。
  • 第三部分是金融策略实战(第5~6章),结合R语言技术和金融知识,解决金融量化领域的实际问题。

第一章,金融市场概述,为全书开篇,主要介绍了如何R语言做量化投资的思路和方法。量化投资是跨学科知识结合的一个方向,包括了R语言的技术层面的知识,基础学科的应用和金融市场的情况。R语言社区提供丰富的金融工具包,可以让我们快速构建量化投资的体系结构。本章内容以我个人的从业体会,从数据的角度观察中国的金融市场,发现机会,找到风口。

第二章,金融理论,主要介绍了金融经典理论模型和R语言的实现方法。用R语言深度解读,投资学理论和统计学理论在实际金融市场中的应用,包括4个基础理论模型,资本资产定价模型、一元回归性线模型、多元回归线性模型、自回归模型,希望这些基础理论模型可以帮助读者,找到理解金融市场的方法。

第三章,R语言数据处理。以R语言数据处理技术为核心,介绍了如何用R语言进行各种类型数据的处理方法,包括标准的结构化数据集的处理和字符数据集的处理,同时深入浅出地介绍了R语言数据处理方式,包括循环、分组、合并、管道、分词等的常用数据处理操作。

第四章,R语言高性能计算。R语言的性能问题一直是被大家所关心的,R本身有很多解决方案来提高性能,但由于R语言内核的单线程设计,让R本身的解决方案有飞跃式的性能提升是困难的。本章将介绍通过3种外部技术,来让R语言的性能达到生产环境的要求。

第五章,债券和回购。金融市场很大,不仅有股票,更大市场是债券。本章重点介绍了如何用R语言去进行债券分析,做一些债券投资和套利。低风险的债券投资,说不定是我们投资理财更好的选择。

第六章,量化投资策略案例。本章全部是综合的案例,从金融市场开始研究,到数学公式,R语言建模,历史数据回测,最后找到投资机会,是一套完整的从理论到实践的学习方法。祝大家在金融市场中玩的开心!

本书有很多综合运用的知识,在您阅读本书的时候,建议读者顺序阅读全部的章节。本书的一些技术实现,用到了我前两本书介绍的知识点,《R的极客理想-高级开发篇》和《R的极客理想-工具篇》,建议读者一起阅读。

5. 致谢

感谢在我最失意的时候,帮助我度过难关的朋友,北京千庄智金科技有限责任公司总经理张颂,量子金服CEO刘亚非,民生银行同事许斌。 感谢所有R语言的读者,以及社区的各位朋友,让我们通过R语言认识,并一起把知识进行传播。 感谢天善智能社区CEO梁勇,为本书提供赞助和推广。同时,感谢台湾銓智金融科技合伙人陈琪龙博士,复旦大学黄达教授,为本书写推荐序。感谢机械工业出版社华章公司的主编 杨福川 和编辑 李艺,帮助我审阅全部章节,让本书得以出版。

特别感谢我的爱人一直在鼓励我,最终让我走出了失意的阴影。感谢我的爸爸、妈妈,感谢你们对我工作上的支持和生活上的照顾!小宝宝,也在今年出生。

谨以此书献给我最亲爱的家人以及众多R语言爱好者们!祝大家阅读愉快,欢迎交流。

转载请注明出处:
http://blog.fens.me/r-book3/

打赏作者

2017微软技术暨生态大会:R语言搭建多因子体系

跨界知识聚会系列文章,“知识是用来分享和传承的”,各种会议、论坛、沙龙都是分享知识的绝佳场所。我也有幸作为演讲嘉宾参加了一些国内的大型会议,向大家展示我所做的一些成果。从听众到演讲感觉是不一样的,把知识分享出来,你才能收获更多。

关于作者

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog:http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/meeting-ms-20171103

前言

微软的技术大会,够规模,够档次,更切身地感受到,微软已经变得开放了!同时,微软股价创造了历史新高,比尔盖茨来华访问。

在本次大会上,我主要介绍的是开源技术R语言,在金融量化投资领域的应用。本次分享,仅仅从传播知识的角度,用IT人能够理解的语言,说出基金经理在做的事情

目录

  1. 我的演讲主题:R语言搭建多因子体系
  2. 会议体验和照片分享

1. 我的演讲主题:R语言搭建多因子体系

感谢微软对于MVP获得者的邀请,让MVP有展示个人能力的机会。我本次分享的主题为:R语言搭建多因子体系,主要内容来自我的一篇博文:R语言搭建多因子体系(未发布)。

分享主题的目录大纲如下:

  1. 故事开始
  2. 金融理论
  3. 多因子体系
  4. R语言建模
  5. 实例应用

本此分析主要是从金融的角度切入,介绍多因子的体系,进行选股,并通过R语言进行实现的。多因子方法选股,是目前主流的主动型基金的选股操作方法。本次分享,从一个故事引入,让没有金融背景的朋友,也能快速进入场景。用IT人能够理解的语言,说出基金经理在做的事情。

同时,我也在致力于推动R语言在中国金融领域的发展,让R可以给更多的用户使用,培养出更多的数据分析师。也希望让我们中国人的技术能够走出去到世界的舞台。希望多能认识志同道合的朋友,一起做一些事情。

2. 会议体验和照片分享

会议的主页:https://www.microsoft.com/china/techsummit/2017/

本次微软大会由百个主题组成,主要是微软的产品技术介绍。我被安装在11月03月下午的分享。让我没想到的是R语言相关的主题有3个,只不过大家的兴趣点似乎并不在数据分析或R语言。作为小众的R语言,还要有很长的路要走啊!

我的介绍和照片分享。

2.2 会议相关照片

本次的场地在 北京国际饭店会议中心,展位上也有各种新技术,和新厂商。

xbox和VR

金融解决方案

现代化工作模式

大学师弟,看起来比我压力还大。

本次大会办出世界企业的水平,希望明年有机会去微软总部西雅图,参加2018 MVP Global大会。我要赶紧准备签证去!

转载请注明出处:
http://blog.fens.me/meeting-ms-20171103

打赏作者

回测好,为什么实盘不靠谱?

用IT技术玩金融系列文章,将介绍如何使用IT技术,处理金融大数据。在互联网混迹多年,已经熟练掌握一些IT技术。单纯地在互联网做开发,总觉得使劲的方式不对。要想靠技术养活自己,就要把技术变现。通过“跨界”可以寻找新的机会,创造技术的壁垒。

金融是离钱最近的市场,也是变现的好渠道!今天就开始踏上“用IT技术玩金融”之旅!

关于作者:

  • 张丹(Conan), 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/finance-backtest

前言

经常看到做量化的朋友,晒出各种漂亮的回测曲线,准备一夜发家,但开始真金白银地去交易时,就会亏得一塌糊涂。

回测好,为什么实盘不靠谱?这里其实有很多的坑,不用钱买点教训,你是不会明白的。有经验的量化交易员,都是用钱磨炼出来。把你的回测慢慢贴近实盘,让回测结果越来越可靠。

本文为量子金服约稿文章。

目录

  1. 实例复盘
  2. 问题在哪?
  3. 量化理论和模型

1. 实例复盘

回测好,真的是因为策略好吗?

我们举个例子,你可能用到某个回测工具或平台,顺手复制了一个demo的代码,一点运行,就能跑出10%的收益率。接下来,你花了一个晚上彻夜研究,把参数用机器学习的方法来优化,黎明时,终于把收益率提高到了40%。虽然一夜没睡,但心里却是无限地兴奋,觉得多年所学的IT技术终于可以实现赚钱的理想了,金融市场不过如此。明天就先把1个月工资赚出来,下个月就辞职,再也不用看S*领导的脸色,真是浪费生命了。

有过上面经历的同学,我想不在少数吧。第二天,就把打工2年多辛辛苦苦攒到的10万块投到了股市中。谁想股市风云变幻,不仅市场不仅没按照模型的方向走,而且又赶上严监管、去杠杆、大股东减持等等一系列的样本外事件发生,2个月后不仅没有赚到当初设想的钱,甚至亏损到了20%,感情上已经受不了,拒绝了之前定下的止损的规则,又经历了几周的连续下跌,最后亏损到达50%。

每天心都在滴血,连续3个月都是吃不好、睡不好,最后一咬牙全部割肉了。开始全盘怀疑自己,自信心被打击到了负值,封账号,再也不碰股市了。

2. 问题在哪?

那么,为什么回测好的策略实盘就不这么不靠谱呢?可能有以下几点原因。

2.1 算错了

当你的回测出现有显著的盈利时,最大的可能是你算错了。比如,在计算时写错了正负号、不应该用年化的时候用了年化的值,没有严格区别复权数据与非复权数据的区别、交易的周期没对齐、无风险收益率取值过小、四舍五入时保留位数过少、使用向理计算时出现的问题、NA值没有处理、使用了来自互联网的未经验证的数据等等。

总之各种的细节,都会让你的回测出错,而且如果你不理解每个指标的金融含义,你甚至都不知道自己错了。

2.2 未来函数

如果每个计算细节你都了解了,回测结果依然非常好,还是先别激动,检查一下是不是用到未来的函数。
使用到未来函数也是很常见的一个问题,而且通常都是不知不觉的。比如,我们会经常听到股评分析师说:“在牛市开始时建仓买入,在到达最高点时卖出”,这其实就是用到了未来函数。在实际的交易过程中,我怎么会知道,什么时候是牛市的开始,又怎么会知道最高点是3600点还是5700点?如果我真的知道了,我还做什么量化交易,早就环游世界去了。

我们很多时候会都用已经知道的市场信息做回测,但实际交易时,你并不知道市场是什么样子的,会向什么方向变。比如,我们现在来看2017年上半年招商银行涨的很好,那么我就针对银行股开始做回测,而且给招商银行加大权重。在一切数据都算对的情况下,回测的资金曲线相当的漂亮,半年获得了30%以上的收益率,而且最大回撤控制在3%以内,夏普、詹森Alpha也都很不错,这些指标都表示了我的主动管理能力很强,我是个牛逼的基金经理。

真的是这样吗?你在不经意用到了未来函数,才使得你发现了招商银行,然后再对银行股做了回测,获得了较好的资金曲线。所以,这不是能力,也不是运气,是犯规了。

2.3 过拟合

从IT程序员转到金融的量化分析师们,在很多情况下都会用纯IT的方法,来解决金融建模的问题。比如,做了5年推荐系统的推荐算法专家,非常擅长用机器学习的方法,来找到数据之间的关系。于是就以纯数据的方式来切入,脱离金融的投资学理论,导致了数据的过度使用。通过历史数据试图预测未来,而且找到一条完美的投资曲线,穿过所有的样本点,最后将导致过拟合。

从IT转行到金融的朋友,通常有个特点,就是动手能力强,数据来就先丢到模型里,才不管到结果底能不能解释,反正我的回测曲线很漂亮。特别是深度学习,增强学习等方法的崛起,让程序员群体一下子高大上起来,通过一种算法,升维升维再升维,就能通吃所有的单一分类算法模型。这样的结果就是过拟合。回测曲线必然是非常漂亮的,但到实际环境一运行,就只能用惨不忍睹来形容了。

2.4 策略周期

从投资的角度,每种策略都有自己适应的场景。在合适的场景下,选到了适合的资产,那么你的策略会表现的非常棒。但是实际的金融市场是轮动的,资产配置随大的金融周期轮动,股票市场随着行业板块轮动。有可能你在回测的时候选对了风口,赶上了趋势,而实盘时候错过风口或者选错了金融资产,那么就会事与愿违了。

比如,你的策略就是研究债券的,从2016上半年到2017年上半年,选出了鹏华全球高收益债(000290)这支QDII基金,比国内的大部分债基表现都抢眼,走势非常稳定,持续上升,你坚定的买进加仓。但是不凑巧的是,你刚买入完,人民币就进入到了升值的区间,虽然债券本身是很稳定的,但人民币持续走强,由于汇率的影响让这支债基天天亏钱。如果你又懂债券又懂外汇,这个点没想到是能力问题。如果你完全不懂外汇,单从债券的角度考虑,那么就不是能力问题,也不是模型不行,而是运气太差,没把握到轮动的周期。

2.5 真实交易环境

真实的交易,是会被各种情况所影响的。当你的交易量过大时,你会影响市场,这时你的交易就会发生偏离,实际市场交易的冲击成本会比你回测时看到的成交量大得多,而且冲击成本又是很难被模拟和计算的。

当你购买流动性不好的金融产品时,模型的信号出来了,但是实际你却买不到,或者卖不出去,当你被迫用对手价来成交时,就会有比较大的滑点。滑点对于高频交易来说是致命的,对于长周期的趋势交易策略,倒是影响不大。

手续费也是一个不容小觑的因素,2017年7月开始黑色系商品期货被猛炒,焦炭、焦煤的平今手续费上调至3倍,铁矿石平今手续费上调到2倍。这种政策性的调整,在研发模型时是不可预知的,平今手续费的上调,直接就拍死了日内模型。2015年调整的股指期货的40倍手续费,几乎把所有的投机的模型都干掉了。

股票市场也很多真实交易环境的特殊性,比如2016年初开始试行的熔断机制,一共4天,发生了多次恐慌性的挤兑,上证指数下跌488.87点,相比4天前收盘点位下跌了13.8%,A股蒸发市值逾6万亿。

当然,也有一些真实交易环境中的乌龙指,有时会我们带来一些额外的惊喜。

真实交易环境是复杂的,也是很难在回测环境中模拟的,所以要深刻了解金融市场、了解市场运作的原理,你才能规避真实交易环境与回测环境中的差异点。

2.6 人工干预

还有一种情况,就是人工干预。当你建好一个模型,应用到实盘的时候,你要充分地相信你的模型,并且严格的执行。每当遇到回撤的时候,你依然要相信你的模型,坚持模型的策略。

如果你心理抗不住,开始干预时,也会造成回测与实盘的偏差。这个时候,就很难判断是模型不靠谱,还是人不靠谱了。每当我在干预实盘模型的时候,调来调去,觉得及时止盈止损了,实际上是在破坏自己的规则,更加影响了策略的稳定性。

当然,可能还有更多的原因,让回测到实盘有很大的差距。我们需要认真地思考,把每个细节都去实践,慢慢地才能让你的回测越来越接近实盘的效果。

3. 量化理论和模型

从专业角度来讲,投资就是要找到市场的规律,而规律的本质是符合金融市场的简单逻辑。赚钱的模型,通常都是很巧妙的把规律进行量化。

任何模型或者理论,第一步都是提出假设,定义应用场景,解决什么问题。

如果我们能够做出正确的假设,当然是可以赚到钱的,能够赚大钱还是赚小钱,就是运气了。

《海龟交易法》流行了很多年,至今仍然被广大的交易员所使用,书中所讲述是就是金融市场的规律。假设条件越简单,回测可能越靠谱,会越贴近实盘。

转载请注明出处:
http://blog.fens.me/finance-backtest

打赏作者

R语言数据科学新类型tibble

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-tibble/

前言

最近正在整理用R语言进行数据处理的操作方法,发现了 RStudio 公司开发的数据科学工具包tidyverse,一下子就把我吸引了。通过2天时间,我把tidyverse项目整体的学了一遍,给我的启发是非常大的。tidyverse 重新定义了数据科学的工作路径,而且路径上每个核心节点,都定义了对应的R包。这真是一项造福数据分析行业的工程,非常值得称赞!!

tidyverse个项目,包括了一系列的子项目,其中tibble被定义为取代传统data.frame的数据类型,完全有颠覆R的数据操作的可能。跟上R语言领袖的脚步,领先进入数据科学新的时代。

目录

  1. tibble介绍
  2. tibble安装
  3. tibble包的基本使用
  4. tibble的源代码分析

1. tibble介绍

tibble是R语言中一个用来替换data.frame类型的扩展的数据框,tibble继承了data.frame,是弱类型的,同时与data.frame有相同的语法,使用起来更方便。tibble包,也是由Hadley开发的R包。

tibble对data.frame做了重新的设定:

  • tibble,不关心输入类型,可存储任意类型,包括list类型
  • tibble,没有行名设置 row.names
  • tibble,支持任意的列名
  • tibble,会自动添加列名
  • tibble,类型只能回收长度为1的输入
  • tibble,会懒加载参数,并按顺序运行
  • tibble,是tbl_df类型

tibble的项目主页:https://github.com/tidyverse/tibble

2. tibble安装

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

tibble是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。


~ R
> install.packages('tibble')
> library(tibble)

RStudio官方把tibble项目,集成到了tidyverse项目中了,官方建议直接安装tidyverse项目,这样整个用来做数据科学的库都会被下载下来。


~ R
> install.packages('tidyverse')
> library(tidyverse)
#> Loading tidyverse: ggplot2
#> Loading tidyverse: tibble
#> Loading tidyverse: tidyr
#> Loading tidyverse: readr
#> Loading tidyverse: purrr
#> Loading tidyverse: dplyr
#> Conflicts with tidy packages ----------------------------------------------
#> filter(): dplyr, stats
#> lag():    dplyr, stats

tidyverse项目,是一个包括了数据科学的一个集合工具项目,用于数据提取,数据清理,数据类型定义,数据处理,数据建模,函数化编程,数据可视化,包括了下面的包。

  • ggplot2, 数据可视化
  • dplyr, 数据处理
  • tidyr, 数据清理
  • readr, 数据提取
  • purrr, 函数化编程
  • tibble, 数据类型定义

tidyverse项目的地址:https://github.com/tidyverse/tidyverse。高效的使用R语言做数据科学,请参考开源图书 R for Data Science.

3. tibble包的基本使用

对于tibble包的使用,主要需要掌握创建、数据转型、数据查看、数据操作、与data.frame的区别点。复杂的数据处理功能,是dplyr项目来完成,下一篇讲dplyr的文章再给大家介绍。

3.1 创建tibble

创建一个tibble类型的data.frame是非常简单的,语法与传统的data.frame是类似的。


# 创建一个tibble类型的data.frame
> t1<-tibble(1:10,b=LETTERS[1:10]);t1
# A tibble: 10 x 2
   `1:10`     b
    <int> <chr>
 1      1     A
 2      2     B
 3      3     C
 4      4     D
 5      5     E
 6      6     F
 7      7     G
 8      8     H
 9      9     I
10     10     J

# 创建一个data.frame
> d1<-data.frame(1:10,b=LETTERS[1:10]);d1
   X1.10 b
1      1 A
2      2 B
3      3 C
4      4 D
5      5 E
6      6 F
7      7 G
8      8 H
9      9 I
10    10 J

从上面的输出可以看到tibble类型,会在输出时多一行,用来指定每一列的类型。

tibble用缩写定义了7种类型:

  • int,代表integer
  • dbl,代表double
  • chr,代表character向量或字符串。
  • dttm,代表日期+时间(a date + a time)
  • lgl,代表逻辑判断TRUE或者FALSE
  • fctr,代表因子类型factor
  • date,代表日期dates.

查看类型,发现tbl_df继承了tbl继承是data.frame,所以tibble是data.frame的子类型。


# t1为tbl_df类型
> class(t1)
[1] "tbl_df"     "tbl"        "data.frame"

# 是data.frame类型
> class(d1)
[1] "data.frame"

让我们多角度来观察t1变量。


# 判断是不是tibble类型
> is.tibble(t1)
[1] TRUE

# 查看t1的属性
> attributes(t1)
$names
[1] "1:10" "b"   

$class
[1] "tbl_df"     "tbl"        "data.frame"

$row.names
 [1]  1  2  3  4  5  6  7  8  9 10

# 查看t1的静态结构
> str(t1)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':	10 obs. of  2 variables:
 $ 1:10: int  1 2 3 4 5 6 7 8 9 10
 $ b   : chr  "A" "B" "C" "D" ...

通过文本排列来创建一个tibble


> tribble(
+   ~colA, ~colB,
+   "a",   1,
+   "b",   2,
+   "c",   3
+ )
# A tibble: 3 x 2
   colA  colB
  <chr> <dbl>
1     a     1
2     b     2
3     c     3

通过vector创建tibble


> tibble(letters)
# A tibble: 26 x 1
   letters
     <chr>
 1       a
 2       b
 3       c
 4       d
 5       e
 6       f
 7       g
 8       h
 9       i
10       j
# ... with 16 more rows

通过data.frame创建tibble,这时就会报错了。


> tibble(data.frame(1:5))
Error: Column `data.frame(1:5)` must be a 1d atomic vector or a list

通过list创建tibble


> tibble(x = list(diag(1), diag(2)))
# A tibble: 2 x 1
              x
         <list>
1 <dbl [1 x 1]>
2 <dbl [2 x 2]>

我们看到tibble其实是存储list类型,这是data.frame做不到的。

通过一个tibble,创建另一个tibble,这时也会报错了。

> tibble(x = tibble(1, 2, 3))
Error: Column `x` must be a 1d atomic vector or a list

3.2 数据类型转换

tibble是一个新的类型,R语言中大部分的数据都是基于原有的数据类型,所以原有数据类型与tiblle类型的转换就显的非常重要了。

把一个data.frame的类型的转换为tibble类型


# 定义一个data.frame类型变量
> d1<-data.frame(1:5,b=LETTERS[1:5]);d1
  X1.5 b
1    1 A
2    2 B
3    3 C
4    4 D
5    5 E

# 把data.frame转型为tibble
> d2<-as.tibble(d1);d2
# A tibble: 5 x 2
   X1.5      b
  <int> <fctr>
1     1      A
2     2      B
3     3      C
4     4      D
5     5      E

# 再转回data.frame
> as.data.frame(d2)
  X1.5 b
1    1 A
2    2 B
3    3 C
4    4 D
5    5 E

我们可以看到tibble与data.frame的转型是非常平滑的,一个转型函数就够,不需要中间做任何的特殊处理。

把一个vector转型为tibble类型,但是不能再转回vector了。


# vector转型到tibble
> x<-as.tibble(1:5);x
# A tibble: 5 x 1
  value
  <int>
1     1
2     2
3     3
4     4
5     5

# tibble转型到vector, 不成功
> as.vector(x)
# A tibble: 5 x 1
  value
  <int>
1     1
2     2
3     3
4     4
5     5

把list转型为tibble。


# 把list转型为tibble
> df <- as.tibble(list(x = 1:500, y = runif(500), z = 500:1));df
# A tibble: 500 x 3
       x          y     z
   <int>      <dbl> <int>
 1     1 0.59141749   500
 2     2 0.61926125   499
 3     3 0.06879729   498
 4     4 0.69579561   497
 5     5 0.05087461   496
 6     6 0.63172517   495
 7     7 0.41808985   494
 8     8 0.78110219   493
 9     9 0.95279741   492
10    10 0.98930640   491
# ... with 490 more rows

# 把tibble再转为list
> str(as.list(df))
List of 3
 $ x: int [1:500] 1 2 3 4 5 6 7 8 9 10 ...
 $ y: num [1:500] 0.5914 0.6193 0.0688 0.6958 0.0509 ...
 $ z: int [1:500] 500 499 498 497 496 495 494 493 492 491 ...

tibble与list的转型也是非常平滑的,一个转型函数就够。

把matrix转型为tibble。


# 生成一个matrix
> m <- matrix(rnorm(15), ncol = 5)

# matrix转为tibble
> df <- as.tibble(m);df
# A tibble: 3 x 5
          V1         V2         V3         V4         V5
                               
1  0.8436494  2.1420238  0.2690392 -0.4752708 -0.2334994
2  1.0363340  0.8653771 -0.3200777 -1.7400856  1.2253651
3 -0.2170344 -1.1346455  0.2204718  1.2189431  0.7020156

# tibble转为matrix
> as.matrix(df)
             V1         V2         V3         V4         V5
[1,]  0.8436494  2.1420238  0.2690392 -0.4752708 -0.2334994
[2,]  1.0363340  0.8653771 -0.3200777 -1.7400856  1.2253651
[3,] -0.2170344 -1.1346455  0.2204718  1.2189431  0.7020156

从上面的转型测试可以看到,tibble类型是非常友好的,可以与data.frame, list, matrix 进行相互转型操作。tibble与vector是不能进行直接转型的,这与data.frame的行为是一致的,如果需要转型,我们可以分别取出每一列进行拼接,或转为matrix再操作。

3.3 tibble数据查询

通常我们是str()函数来观察数据的静态组成结果,在tibble包提供了一个glimpse(),可以方便我们来观察tibble和data.frame类型的数据。

比较glimpse()和str()对于data.frame的数据查看输出


> glimpse(mtcars)
Observations: 32
Variables: 11
$ mpg   21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17....
$ cyl   6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, ...
$ disp  160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6...
$ hp    110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215...
$ drat  3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.0...
$ wt    2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440...
$ qsec  16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90...
$ vs    0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, ...
$ am    1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, ...
$ gear  4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, ...
$ carb  4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, ...

# 打印静态结构
> str(mtcars)
'data.frame':	32 obs. of  11 variables:
 $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
 $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
 $ disp: num  160 160 108 258 360 ...
 $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
 $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
 $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
 $ qsec: num  16.5 17 18.6 19.4 17 ...
 $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
 $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
 $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
 $ carb: num  4 4 1 1 2 1 4 2 2 4 ...

比较glimpse()和str()对于tibble的数据查看输出。


# 新建tibble
> df <- tibble(x = rnorm(500), y = rep(LETTERS[1:25],20))

# 查看df
> glimpse(df)
Observations: 500
Variables: 2
$ x  -0.3295530, -2.0440424, 0.1444697, 0.8752439, 1.7705952, 0.5898253, 0.1991844,...
$ y  "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P"...

# 查看df静态结构
> str(df)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':	500 obs. of  2 variables:
 $ x: num  -0.33 -2.044 0.144 0.875 1.771 ...
 $ y: chr  "A" "B" "C" "D" ...

按列出数据,一层[]返回的结果还是tibbe,二层[]与$返回的结果为列组成的向量。


> df <- tibble(x = 1:3, y = 3:1)

# 按列取,返回tibble
> df[1]
# A tibble: 3 x 1
      x
  <int>
1     1
2     2
3     3

# 按列取,返回向量
> df[[1]]
[1] 1 2 3
> df$x
[1] 1 2 3

按行取数据,这时一定要用,来做分隔符


# 取第一行
> df[1,]
# A tibble: 1 x 2
      x     y
  <int> <int>
1     1     3

# 取前2行
> df[1:2,]
# A tibble: 2 x 2
      x     y
  <int> <int>
1     1     3
2     2     2

# 取第二列的2,3行
> df[2:3,2]
# A tibble: 2 x 1
      y
  <int>
1     2
2     1

3.4 tibble数据操作

增加一列。


# 创建一个tibble
> df <- tibble(x = 1:3, y = 3:1);df
# A tibble: 3 x 2
      x     y
  <int> <int>
1     1     3
2     2     2
3     3     1

# 增加一列
> add_column(df, z = -1:1, w = 0)
# A tibble: 3 x 4
      x     y     z     w
  <int> <int> <int> <dbl>
1     1     3    -1     0
2     2     2     0     0
3     3     1     1     0

增加一行,还是基于上面生成的df变量。


# 在最后,增加一行
> add_row(df, x = 99, y = 9)
# A tibble: 4 x 2
      x     y
  <dbl> <dbl>
1     1     3
2     2     2
3     3     1
4    99     9

# 插入第二行,增加一行
> add_row(df, x = 99, y = 9, .before = 2)
# A tibble: 4 x 2
      x     y
  <dbl> <dbl>
1     1     3
2    99     9
3     2     2
4     3     1

3.5 tibble与data.frame的区别

列名,可以自由定义,并且会自动补全。


> tb <- tibble(
+   `:)` = "smile",
+   ` ` = "space",
+   `2000` = "number",
+   `列名` = "hi",
+   1,1L
+ )
> tb
# A tibble: 1 x 6
   `:)`   ` ` `2000`  列名   `1`  `1L`
  <chr> <chr>  <chr> <chr> <dbl> <int>
1 smile space number    hi     1     1

数据,按顺序执行懒加载。


> a <- 1:5
> tibble(a, b = a * 2)
# A tibble: 5 x 2
      a     b
  <int> <dbl>
1     1     2
2     2     4
3     3     6
4     4     8
5     5    10

打印输出控制,tibble的打印控制被重写了,所以执行print()函数时,模型会先进行类型匹配,然后调用print.tbl()。


# 创建tiblle
> tb<-tibble(a=1:5, b = a * 2, c=NA, d='a', e=letters[1:5])

# 打印前10行,不限宽度
> print(tb,n = 10, width = Inf)
# A tibble: 5 x 5
      a     b     c     d     e
  <int> <dbl> <lgl> <chr> <chr>
1     1     2    NA     a     a
2     2     4    NA     a     b
3     3     6    NA     a     c
4     4     8    NA     a     d
5     5    10    NA     a     e

# 打印前3行,宽度30
> print(tb,n = 3, width = 30)
# A tibble: 5 x 5
      a     b     c     d
  <int> <dbl> <lgl> <chr>
1     1     2    NA     a
2     2     4    NA     a
3     3     6    NA     a
# ... with 2 more rows, and 1
#   more variables: e 

# 用print函数,打印data.frame
> df<-data.frame(tb)
> print(df)
  a  b  c d e
1 1  2 NA a a
2 2  4 NA a b
3 3  6 NA a c
4 4  8 NA a d
5 5 10 NA a e

3.7 特殊的函数

lst,创建一个list,具有tibble特性的list。 lst函数的工作原理,类似于执行[list()],这样的操作。


# 创建一个list,懒加载,顺序执行
> lst(n = 5, x = runif(n))
$n
[1] 5
$x
[1] 0.6417069 0.2674489 0.5610810 0.1771051 0.1504583

enframe,快速创建tibble。enframe提供了一个模板,只有2列name和value,快速地把2个向量匹配的tibble中,可以按行生成或按列生成。


# 按列生成
> enframe(1:3)
# A tibble: 3 x 2
   name value
  <int> <int>
1     1     1
2     2     2
3     3     3

# 按行生成
> enframe(c(a = 5, b = 7))
# A tibble: 2 x 2
   name value
  <chr> <dbl>
1     a     5
2     b     7

deframe,把tibble反向转成向量,这个函数就实现了,tibble到向量的转换。它默认把name列为索引,用value为值。


# 生成tibble
> df<-enframe(c(a = 5, b = 7));df
# A tibble: 2 x 2
   name value
  <chr> <dbl>
1     a     5
2     b     7

# 转为vector
> deframe(df)
a b 
5 7 

3.8 用于处理data.frame函数

tibble还提供了一些用于处理data.frame的函数。


# 创建data.frame
> df<-data.frame(x = 1:3, y = 3:1)

# 判断是否有叫x的列
> has_name(df,'x')
[1] TRUE

# 判断是否有行名
> has_rownames(df)
[1] FALSE

# 给df增加行名
> row.names(df)<-LETTERS[1:3];df
  x y
A 1 3
B 2 2
C 3 1

# 判断是否有行名
> has_rownames(df)
[1] TRUE

# 去掉行名
> remove_rownames(df)
  x y
1 1 3
2 2 2
3 3 1

# 把行名转换为单独的一列
> df2<-rownames_to_column(df, var = "rowname");df2
  rowname x y
1       A 1 3
2       B 2 2
3       C 3 1

# 把一列设置为行名
> column_to_rownames(df2, var = "rowname")
  x y
A 1 3
B 2 2
C 3 1

# 把行索引转换为单独的一列
> rowid_to_column(df, var = "rowid")
  rowid x y
1     1 1 3
2     2 2 2
3     3 3 1

这些data.frame的工具函数,我猜是用于data.frame到tibble的数据类型转换用的,因为tiblle是没有行名的。

4. tibble的源代码分析

对于tibble包的深入理解,我们需要分析tibble包底层的源代码,以及设计原理。我们打开github上是tibble项目,找到tibble.R的源代码,先来了解一下tibble类型的定义。

找到tibble函数的定义:


tibble <- function(...) {
  xs <- quos(..., .named = TRUE)
  as_tibble(lst_quos(xs, expand = TRUE))
}

tibble函数的构成是非常简单地,用quos()和lst_quos()函数来分割参数,再用as_tibble()函数,生成tibble类型。

我们再找到as_tibble函数的定义:


as_tibble <- function(x, ...) {
  UseMethod("as_tibble")
}

as_tibble.tbl_df <- function(x, ..., validate = FALSE) {
  if (validate) return(NextMethod())
  x
}

这个函数是一个S3类型的函数,可以S3面向对象类型的方法,来查找tibble相关的重写的函数。关于S3类型的详细介绍,请参与文章R语言基于S3的面向对象编程


> methods(generic.function=as_tibble)
[1] as_tibble.data.frame* as_tibble.default*    as_tibble.list*       as_tibble.matrix*    
[5] as_tibble.NULL*       as_tibble.poly*       as_tibble.table*      as_tibble.tbl_df*    
[9] as_tibble.ts*    

利用S3的查询函数,把整个tibble类型定义的泛型化函数都找到了。

接下来,我们继续到tbl_df的类型的定义


#' @importFrom methods setOldClass
setOldClass(c("tbl_df", "tbl", "data.frame"))

最后,这样就明确了tbl_df是类的定义,包括了属性和方法,而tibble是实例化的对象。通过对tibble函数的源代码分析,了解tibble本身的结构是怎么样的。那么再接下来,就是如何利用tibble来进行用于数据科学的数据处理过程。请继续阅读下一篇文章:R语言数据科学数据处理包dplyr。

转载请注明出处:
http://blog.fens.me/r-tibble/

打赏作者