• Posts tagged "二进制"

Blog Archives

R语言中的位运算

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹,分析师/程序员/Quant: R,Java,Nodejs
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-bit-operation/

前言

本来是要研究字符串的匹配的问题,然后看着看着就到了文本距离的计算,然后就又到了位运算。要不然也不会想到,用R语言搞二进制的位运算研究。每种算法一旦刨根问底,都是会到计算机的底层计算逻辑。

赶上了问题,就认真面对问题,把二进制和位运算一些看看。关于进制转换的文章,请参考用R语言进制转换-二进制八进制十六进制

目录

  1. 什么是位运算
  2. 位运算的计算过程
  3. R语言中的位运算

1. 什么是位运算

计算机中的所有数值,都是在内存中都是以二进制的形式储存的,即 0、1 两种状态。位运算就是直接对内存中的二进制位数据进行的操作。比如,“&”与运算是一个逻辑运算符,6的二进制是110,11的二进制是1011,那么6 & 11的结果就是2,它是二进制对应位进行逻辑运算的结果(0表示False,1表示True,空位都当0处理)。

位运算概览:

符号描述运算规则
&两个位都为1时,结果才为1
|两个位都为0时,结果才为0
xor异或两个位相同为0,相异为1
~取反0变1,1变0
<<左移各二进位全部左移若干位,高位丢弃,低位补0
>>右移各二进位全部右移若干位,对无符号数,高位补0,有符号数,各编译器处理方法不一样,有的补符号位(算术右移),有的补0(逻辑右移)

2. 位运算的计算过程

2.1 按位与(&)

定义:参加运算的两个数据,按二进制位进行”与”运算。

运算规则:两位同时为1,结果才为1,否则结果为0。

0&0=0 , 0&1=0, 1&0=0, 1&1=1

举例说明:

(3)₁₀ & (5)₁₀ =    (00000011)₂ & (00000101)₂ = (00000001)₂ = (1)₁₀

操作十进制12345678
300000011
&500000101
=100000001

(23)₁₀ & (15)₁₀ =    (00010111)₂ & (00001111)₂ = (00000111)₂ = (7)₁₀

操作十进制12345678
2300010111
&1500001111
=700000111

与运算的用途:

1)清零

如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都为零的数值相与,结果为零。

2)取一个数的指定位

比如取数 X=1010 1110 的低4位,只需要另找一个数Y,令Y的低4位为1,其余位为0,即Y=0000 1111,然后将X与Y进行按位与运算(X&Y=0000 1110)即可得到X的指定位。

3)判断奇偶

只要根据最未位是0还是1来决定,为0就是偶数,为1就是奇数。因此可以用if ((a & 1) == 0)代替if (a % 2 == 0)来判断a是不是偶数。

 

2.2 按位或(|)

定义:参加运算的两个对象,按二进制位进行”或”运算。

运算规则:参加运算的两个对象只要有一个为1,其值为1。

0|0=0, 0|1=1, 1|0=1,  1|1=1

举例说明:

(3)₁₀ | (5)₁₀ =    (00000011)₂ | (00000101)₂ = (00000111)₂ = (7)₁₀

操作十进制12345678
300000011
|500000101
=700000111

(23)₁₀ | (15)₁₀ =    (00010111)₂ | (00001111)₂ = (00011111)₂ = (31)₁₀

操作十进制12345678
2300010111
|1500001111
=3100011111

注意:负数按补码形式参加按位或运算。

或运算的用途:

1)常用来对一个数据的某些位设置为1

比如将数 X=1010 1110 的低4位设置为1,只需要另找一个数Y,令Y的低4位为1,其余位为0,即Y=0000 1111,然后将X与Y进行按位或运算(X|Y=1010 1111)即可得到。

2.3 按位异或(xor)

定义:参加运算的两个数据,按二进制位进行”异或”运算。

运算规则:参加运算的两个对象,如果两个相应位相同为0,相异为1。

0 xor 0=0,  0 xor 1=1,  1 xor 0=1,  1 xor 1=0

举例说明:

(3)₁₀ xor (5)₁₀ =    (00000011)₂ xor (00000101)₂ = (00000111)₂ = (7)₁₀

操作十进制12345678
300000011
xor500000101
=600000110

(23)₁₀ xor (15)₁₀ =    (00010111)₂ xor (00001111)₂ = (00011000)₂ = (24)₁₀

操作十进制12345678
2300010111
xor1500001111
=2400011000

异或的几条性质:

  1. 交换律 (a xor b)  == (b xor a)
  2. 结合律 (a xor b) xor  c == a xor  (b xor  c)
  3. 对于任何数x,都有 x xor  x=0,x xor  0=x
  4. 自反性: a xor  b xor  b = a xor  0=a

异或运算的用途:

1)翻转指定位

比如将数 X=1010 1110 的低4位进行翻转,只需要另找一个数Y,令Y的低4位为1,其余位为0,即Y=0000 1111,然后将X与Y进行异或运算(X  xor  Y=1010 0001)即可得到。

2)与0相异或值不变

例如:(10101110)₂  xor  (00000000)₂ = (10101110)₂

2.4 按位非(~)

定义:参加运算的一个数据,按二进制进行”取反”运算。

运算规则: 对一个二进制数按位取反,即将0变1,1变0。

 ~1=0, ~0=1

举例说明:

~ (3)₁₀ =    ~(00000011)₂  = (11111100)₂ = (-4)₁₀

操作十进制12345678
~300000011
=-411111100

~(23)₁₀  =    ~(00010111)₂ = (11101000)₂ = (-24)₁₀

操作十进制12345678
~2300010111
=-2411101000

按位非运算的用途:

1)使一个数的最低位为零

使a的最低位为0,可以表示为:a & ~1。~1的值为 1111 1111 1111 1110,再按”与”运算,最低位一定为0。因为” ~”运算符的优先级比算术运算符、关系运算符、逻辑运算符和其他运算符都高。

2.5 按位左移(<<)

定义:将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。

设 a=1010 1110,a = a<< 2 将a的二进制位左移2位、右补0,即得a=1011 1000。

若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。

举例说明:

(3)₁₀<< 1=     (00000011)₂ << (1)₁₀= (00000110)₂ = (6)₁₀

操作十进制12345678
300000011
<<1
=600000110

(3)₁₀<< 2=     (00000011)₂ << (2)₁₀ = (00001100)₂ = (12)₁₀

操作十进制12345678
300000011
<<2
=1200001100

2.6 按位右移(>>)

定义:将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。

例如:a=a>>2 将a的二进制位右移2位,左补0 或者 左补1得看被移数是正还是负。

操作数每右移一位,相当于该数除以2。

举例说明:

(30)₁₀>> 1=     (00011110)₂ << (1)₁₀= (00001111)₂ = (15)₁₀

操作十进制12345678
3000011110
>>1
=1500001111

(30)₁₀>> 4=     (00011110)₂ << (4)₁₀ = (00000001)₂ = (1)₁₀

操作十进制12345678
300011110
>>4
=100000001

3. R语言中的位运算

R语言位运算操作概览:

操作函数描述语法
bitwAnd按位与(&)bitwAnd(value1,value2)
bitwOr按位或 (|)bitwOr(value1,value2)
bitwXor按位异或(XOR)bitwXor(value1,value2)
bitWnot按位非(~)bitwNot(value)
bitwShiftL左移bitwShiftL(value,n)
bitwShiftR右移bitShiftR(value,n)

位运算的6个操作,对应上文中的位运算的计算过程。

为了方便查看二进制的结果,我写了intToBitString()函数,方便对十进制转二进制阅读。


# 十进制转二进制,默认截取8位
> intToBitString<-function(num,size=8){
+   a<-as.integer(intToBits(num))
+   pos<-max(which(a==1),8)
+   a<-a[1:pos]
+   paste(rev(a), collapse = "")
+ }

把十进制转二进制。


# 把30转二进制
> intToBitString(30)
[1] "00011110"

# 使用默认函数
> intToBits(30)
 [1] 00 01 01 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[20] 00 00 00 00 00 00 00 00 00 00 00 00 00

按位与操作,计算 3 & 5, 23 & 15


> bitwAnd(3,5)
[1] 1

> bitwAnd(23,15)
[1] 7

# 查看二进制数
> intToBitString(3)
[1] "00000011"
> intToBitString(5)
[1] "00000101"
 intToBitString(23)
[1] "00010111"
> intToBitString(15)
[1] "00001111"

按位或操作,计算 3 | 5, 23 | 15


> bitwOr(3,5)
[1] 7

> bitwOr(23,15)
[1] 31

按位异或,计算 3 xor 5, 23 xor 15


> bitwXor(3,5)
[1] 6

> bitwXor(23,15)
[1] 24

按位非,计算 ~3 , ~23


> bitwNot(3)
[1] -4
> bitwNot(23)
[1] -24

# 查看-4 和 -24的二进制
> intToBitString(-4)
[1] "11111111111111111111111111111100"
> intToBitString(-24)
[1] "11111111111111111111111111101000"

左移,计算 3<<1 , 3<<2


> bitwShiftL(3,1)
[1] 6
> bitwShiftL(3,2)
[1] 12

# 查看3, 6, 12的二进制
> intToBitString(3)
[1] "00000011"
> intToBitString(6)
[1] "00000110"
> intToBitString(12)
[1] "00001100"

右移,计算 30>>1 , 30>>4


> bitwShiftR(30,1)
[1] 15
> bitwShiftR(30,4)
[1] 1

# 查看30,15,1的二进制
> intToBitString(30)
[1] "00011110"
> intToBitString(15)
[1] "00001111"
> intToBitString(1)
[1] "00000001"

用R实现二进制计算,比原本想象的容易不少,代码不仅简单,而且计算函数功能明确,又get到了新的知识。

转载请注明出处:
http://blog.fens.me/r-bit-operation/

打赏作者

用R语言进制转换-二进制八进制十六进制

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹,分析师/程序员/Quant: R,Java,Nodejs
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-binary-octal-hexadecimal/


前言

在用计算机进行数据计算时,避免不少会涉及到进制的转换操作,从十进制转换到二进制,从十进制转换到十六进制等,转换的过程,其实就是数学计算的过程。本文我们就利用R语言进行进制转换的实现。

目录

  1. 二进制八进制十六进制
  2. 转换十进制
  3. 十进制转换非十进制

1. 二进制八进制十六进制

数制,是一种计数的方法,是用一组固定的符号和统一的规则来表示数值的方法。在计数过程中采用进位的方法称为进位计数制(进制),包括数位、基数和位权三个要素。

  • 数位:指数字符号在一个数中所处的位置。
  • 基数:指在某种进位计数制中数位上所能使用的数字符号的个数。例如十进制的基数为10
  • 位权:数制中某一位上的1所表示数值的大小(所处位置的价值)。例如十进制的230,1的位权是100,2的位权是10,3的位权是1。

在计算机编程中,常用到的进制有二进制,八进制,十进制,十六进制。

进制数下标表示举例组成说明

二进制2、B(10)₂=10B0,1Binary:二进制
八进制8、O、Q(10)₈=10O=10Q 0,1,2,3,4,5,6,7Octal:八进制,字母O与数学0容易混淆,常用Q替代
十进制10、D(10)₁₀=10D0,1,2,3,4,5,6,7,8,9Decimal:十进制
二进制16、H(10)₁₆=10H0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,FHexadeciaml:十六进制

进制转换快速查表,反应了不同数制之间的对应及转换关系。

2.  转十进制计算方法

2.1 二进制转十进制

二进制转为十进制要从右到左用二进制的每个数去乘以2的相应次方,小数点后则是从左往右。

计算举例:(0010)₂ 转十进制 为(2)₁₀

二进制0010
2的幂2⁰

(101)₂ = 1 * 2² + 0 * 2¹ + 1 * 2 ⁰ = 4 + 0 + 1 = (5)₁₀

(1110)₂ = 1 * 2³ + 1 * 2² + 1 * 2¹ + 0 * 2⁰ = 8 + 4 + 2 + 0 = (14)₁₀

(0010)₂ = 0 * 2³ + 0 * 2² + 1 * 2¹ + 0 * 2⁰ = 0 + 0 + 2 + 0 = (2)₁₀

R语言实现,使用strtoi()函数,可以把二进制的字符串,转为十进制的数值。


> strtoi(c("101", "1110", "0010"), 2L)
[1]  5 14  2

2.2 八进制转十进制

八进制转为十进制要从右到左用八进制的每个数去乘以8的相应次方,小数点后则是从左往右。

计算举例:

(375)₈ = 3 * 8² + 7 * 8¹ + 5 * 8 ⁰ = 192 + 56 + 5 = (253)₁₀

(1110)₈ = 1 * 8³ + 1 * 8² + 1 * 8¹ + 0 * 8⁰ = 512 + 64 + 8 + 0 = (584)₁₀

R语言实现


> strtoi(c("375", "1110"), 8L)
[1] 253 584

2.3 十六进制转十进制

十六进制转为十进制要从右到左用八进制的每个数去乘以16的相应次方,小数点后则是从左往右。

计算举例:

(10A)₁₆ = 1 * 16² + 0 * 16¹ + 10 * 16 ⁰ = 256 + 0 + 10 = (266)₁₀

(111F)₁₆ = 1 * 16³ + 1 * 16² + 1 * 16¹ + 15 * 16⁰ = 4096 + 256 + 16 + 15 = (4383)₁₀

R语言实现


> strtoi(c("10A","111F"), 16L)
[1]  266 4383

3.  十进制转换非十进制计算方法

使用辗转相除法:

  • 整数部分:整数除以进制数(2,8,10,16),倒取余数,直到整数为0。
  • 小数部分:小数乘以进制数(2,8,10,16),正取整数,直接小数为0。

以 十进制转二进制为例,分为整数转二进制,和小数转二进制。

3.1 整数转二进制:

采用”除2取余,逆序排列”法:

  1. 用2整除一个十进制整数,得到一个商和余数
  2. 然后再用2去除得到的商,又会得到一个商和余数
  3. 重复操作,一直到商为小于1时为止
  4. 然后将得到的所有余数全部排列起来,再将它反过来逆序排列。

计算举例:

计算(5)₁₀的二进制。

计算位置
5/2211
2/2102
1/2013

(5)₁₀ = 反转(5%2, 2%2, 1%2) = 反转(1,0,1) = (101)₂

计算(42)₁₀的二进制。

计算位置
42/22101
21/21012
10/2503
5/2214
2/2105
1/2016

(42)₁₀ = 反转(42%2 ,  21%2  , 10%2 , 5%2, 2%2, 1%2) = 反转(0,1,0,1,0,1 ) = (101010)₂

R语言实现,我们可以使用intToBits()函数,输入十进制整数,会得到二进制的结果。


> intToBits(5)
 [1] 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[20] 00 00 00 00 00 00 00 00 00 00 00 00 00

> intToBits(42)
 [1] 00 01 00 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00
[20] 00 00 00 00 00 00 00 00 00 00 00 00 00

因为计算机内部表示数的字节单位是定长的,如8位、16位、32位。所以位数不够时,高位补零。R语言intToBits(),int是32位的,因此出现了大量的补的位数。

intToBits()函数输出结果非常长,不太利于阅读,我们可以改造一下显示。创建一个intToBitString()函数,把二进制的intToBits()结果转为字符串进行输出,同时去掉多余的0。


> intToBitString<-function(num){
+   a<-as.integer(intToBits(num))
+   a<-a[1:max(which(a==1))] + paste(rev(a), collapse = "") + } # 输出二进制结果 > intToBitString(5)
[1] "101"
> intToBitString(42)
[1] "101010"

3.2 小数转二进制:

采用”乘2取整,顺序排列”法:

  1. 用2乘十进制小数,可以得到积,将积的整数部分取出
  2. 再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出
  3. 重复操作,直到积中的小数部分为零,此时0或1为二进制的最后一位,或者达到所要求的精度为止

计算举例:

(0.25)₁₀ = (0.25*2, 0.5*2) = (0,1) = (0.01)₂

(0.111)₁₀ = (0.111*2 ,  0.222*2  , 0.444*2 , 0.888*2, 0.776*2, 0.552*2, 0.104*2 …) = (0,0,0,1,1,1,0 … ) = (0.000110)₂ 取前7位

(5.25)₁₀ = 反转(5%2, 2%2, 1%2) . (0.25*2, 0.5*2) = (101)₂ .(0.01)₂ = (101.01)₂

用R语言实现,使用numToBits()函数,可以把带小数的数值,转换为64位的二进制数,然后可以用packBits()函数,进行数值还原来十进制数。


> a1<-numToBits(0.25);a1
 [1] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[20] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[39] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 01 01 01
[58] 01 01 01 01 01 00 00
> packBits(a1,type="double")
[1] 0.25

> a2<-numToBits(0.111);a2
 [1] 01 00 00 00 01 00 01 01 00 01 00 00 00 01 00 00 01 01 00
[20] 01 01 00 01 01 01 00 00 01 01 01 01 01 00 01 01 01 01 01
[39] 01 00 00 01 00 01 00 01 01 00 00 00 01 01 01 01 00 01 01
[58] 01 01 01 01 01 00 00
 
> a3<-numToBits(5.25);a3
 [1] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[20] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[39] 00 00 00 00 00 00 00 00 00 00 01 00 01 00 01 00 00 00 00
[58] 00 00 00 00 00 01 00
> packBits(a3,type="double")
[1] 5.25

本文我们进制转换的数学计算原理和R语言的函数使用,可以很方便的利用不同进制特点,构建自己的计算模型。

转载请注明出处:
http://blog.fens.me/r-binary-octal-hexadecimal/

打赏作者