• Posts tagged "str_c"

Blog Archives

R语言字符串处理包stringr

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-stringr/

stringr

前言

用R语言处理字符串,总觉得很麻烦,即不能用向量的方法进行分割,也不能用循环遍历索引。grep()家族函数常常记不住,paste()函数默认以空格分割,各种不顺手啊!随着使用R语言的场景越来越多,字符串处理是必不可少的。给大家推荐一个由 Hadley Wickham 开发的一个灵活的字符串处理包stringr。

目录

  1. stringr介绍
  2. stringr安装
  3. stringr的API介绍

1. stringr介绍

stringr包被定义为一致的、简单易用的字符串工具集。所有的函数和参数定义都具有一致性,比如,用相同的方法进行NA处理和0长度的向量处理。

字符串处理虽然不是R语言中最主要的功能,却也是必不可少的,数据清洗、可视化等的操作都会用到。对于R语言本身的base包提供的字符串基础函数,随着时间的积累,已经变得很多地方不一致,不规范的命名,不标准的参数定义,很难看一眼就上手使用。字符串处理在其他语言中都是非常方便的事情,R语言在这方面确实落后了。stringr包就是为了解决这个问题,让字符串处理变得简单易用,提供友好的字符串操作接口。

stringr的项目主页:https://cran.r-project.org/web/packages/stringr/index.html

2. stringr安装

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

stringr是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。


~ R
> install.packages('stringr')
> library(stringr)

3. stringr的API介绍

stringr包1.0.0版本,一共提供了30个函数,方便我们对字符串处理。常用的字符串的处理以str_开头来命名,方便更直观理解函数的定义。我们可以根据使用习惯对函数进行分类:

字符串拼接函数

  • str_c: 字符串拼接。
  • str_join: 字符串拼接,同str_c。
  • str_trim: 去掉字符串的空格和TAB(\t)
  • str_pad: 补充字符串的长度
  • str_dup: 复制字符串
  • str_wrap: 控制字符串输出格式
  • str_sub: 截取字符串
  • str_sub<- 截取字符串,并赋值,同str_sub

字符串计算函数

  • str_count: 字符串计数
  • str_length: 字符串长度
  • str_sort: 字符串值排序
  • str_order: 字符串索引排序,规则同str_sort

字符串匹配函数

  • str_split: 字符串分割
  • str_split_fixed: 字符串分割,同str_split
  • str_subset: 返回匹配的字符串
  • word: 从文本中提取单词
  • str_detect: 检查匹配字符串的字符
  • str_match: 从字符串中提取匹配组。
  • str_match_all: 从字符串中提取匹配组,同str_match
  • str_replace: 字符串替换
  • str_replace_all: 字符串替换,同str_replace
  • str_replace_na:把NA替换为NA字符串
  • str_locate: 找到匹配的字符串的位置。
  • str_locate_all: 找到匹配的字符串的位置,同str_locate
  • str_extract: 从字符串中提取匹配字符
  • str_extract_all: 从字符串中提取匹配字符,同str_extract

字符串变换函数

  • str_conv: 字符编码转换
  • str_to_upper: 字符串转成大写
  • str_to_lower: 字符串转成小写,规则同str_to_upper
  • str_to_title: 字符串转成首字母大写,规则同str_to_upper

参数控制函数,仅用于构造功能的参数,不能独立使用。

  • boundary: 定义使用边界
  • coll: 定义字符串标准排序规则。
  • fixed: 定义用于匹配的字符,包括正则表达式中的转义符
  • regex: 定义正则表达式

3.1 字符串拼接函数

3.1.1 str_c,字符串拼接操作,与str_join完全相同,与paste()行为不完全一致。

函数定义:


str_c(..., sep = "", collapse = NULL)
str_join(..., sep = "", collapse = NULL)

参数列表:

  • …: 多参数的输入
  • sep: 把多个字符串拼接为一个大的字符串,用于字符串的分割符。
  • collapse: 把多个向量参数拼接为一个大的字符串,用于字符串的分割符。

把多个字符串拼接为一个大的字符串。


> str_c('a','b')
[1] "ab"
> str_c('a','b',sep='-')
[1] "a-b"
> str_c(c('a','a1'),c('b','b1'),sep='-')
[1] "a-b"   "a1-b1"

把多个向量参数拼接为一个大的字符串。


> str_c(head(letters), collapse = "")
[1] "abcdef"
> str_c(head(letters), collapse = ", ")
[1] "a, b, c, d, e, f"

# collapse参数,对多个字符串无效
> str_c('a','b',collapse = "-")   
[1] "ab"
> str_c(c('a','a1'),c('b','b1'),collapse='-')
[1] "ab-a1b1"

拼接有NA值的字符串向量时,NA还是NA


> str_c(c("a", NA, "b"), "-d")
[1] "a-d" NA    "b-d"

对比str_c()函数和paste()函数之间的不同点。


# 多字符串拼接,默认的sep参数行为不一致
> str_c('a','b')
[1] "ab"
> paste('a','b')
[1] "a b"

# 向量拼接字符串,collapse参数的行为一致
> str_c(head(letters), collapse = "")
[1] "abcdef"
> paste(head(letters), collapse = "")
[1] "abcdef"
 
#拼接有NA值的字符串向量,对NA的处理行为不一致
> str_c(c("a", NA, "b"), "-d")
[1] "a-d" NA    "b-d"
> paste(c("a", NA, "b"), "-d")
[1] "a -d"  "NA -d" "b -d" 

3.1.2 str_trim:去掉字符串的空格和TAB(\t)

函数定义:

str_trim(string, side = c("both", "left", "right"))

参数列表:

  • string: 字符串,字符串向量。
  • side: 过滤方式,both两边都过滤,left左边过滤,right右边过滤

去掉字符串的空格和TAB(\t)


#只过滤左边的空格
> str_trim("  left space\t\n",side='left') 
[1] "left space\t\n"

#只过滤右边的空格
> str_trim("  left space\t\n",side='right')
[1] "  left space"

#过滤两边的空格
> str_trim("  left space\t\n",side='both')
[1] "left space"

#过滤两边的空格
> str_trim("\nno space\n\t")
[1] "no space"

3.1.3 str_pad:补充字符串的长度

函数定义:

str_pad(string, width, side = c("left", "right", "both"), pad = " ")

参数列表:

  • string: 字符串,字符串向量。
  • width: 字符串填充后的长度
  • side: 填充方向,both两边都填充,left左边填充,right右边填充
  • pad: 用于填充的字符

补充字符串的长度。


# 从左边补充空格,直到字符串长度为20
> str_pad("conan", 20, "left")
[1] "               conan"

# 从右边补充空格,直到字符串长度为20
> str_pad("conan", 20, "right")
[1] "conan               "

# 从左右两边各补充空格,直到字符串长度为20
> str_pad("conan", 20, "both")
[1] "       conan        "

# 从左右两边各补充x字符,直到字符串长度为20
> str_pad("conan", 20, "both",'x')
[1] "xxxxxxxconanxxxxxxxx"

3.1.4 str_dup: 复制字符串

函数定义:

str_dup(string, times)

参数列表:

  • string: 字符串,字符串向量。
  • times: 复制数量

复制一个字符串向量。


> val <- c("abca4", 123, "cba2")

# 复制2次
> str_dup(val, 2)
[1] "abca4abca4" "123123"     "cba2cba2"  

# 按位置复制
> str_dup(val, 1:3)
[1] "abca4"        "123123"       "cba2cba2cba2"

3.1.5 str_wrap,控制字符串输出格式

函数定义:

str_wrap(string, width = 80, indent = 0, exdent = 0)

参数列表:

  • string: 字符串,字符串向量。
  • width: 设置一行所占的宽度。
  • indent: 段落首行的缩进值
  • exdent: 段落非首行的缩进值

 txt<-'R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。'

# 设置宽度为40个字符
> cat(str_wrap(txt, width = 40), "\n")
R语言作为统计学一门语言,一直在小众领域
闪耀着光芒。直到大数据的爆发,R语言变成
了一门炙手可热的数据分析的利器。随着越来
越多的工程背景的人的加入,R语言的社区在
迅速扩大成长。现在已不仅仅是统计领域,教
育,银行,电商,互联网….都在使用R语言。 

# 设置宽度为60字符,首行缩进2字符
> cat(str_wrap(txt, width = 60, indent = 2), "\n")
  R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数
据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来
越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已
不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。 

# 设置宽度为10字符,非首行缩进4字符
> cat(str_wrap(txt, width = 10, exdent = 4), "\n")
R语言作为
    统计学一
    门语言,
    一直在小
    众领域闪
    耀着光芒。
    直到大数据
    的爆发,R
    语言变成了
    一门炙手可
    热的数据分
    析的利器。
    随着越来
    越多的工程
    背景的人的
    加入,R语
    言的社区在
    迅速扩大成
    长。现在已
    不仅仅是统
    计领域,教
    育,银行,
    电商,互联
    网….都在使
    用R语言。 

3.1.6 str_sub,截取字符串

函数定义:

str_sub(string, start = 1L, end = -1L)

参数列表:

  • string: 字符串,字符串向量。
  • start : 开始位置
  • end : 结束位置

截取字符串。


> txt <- "I am Conan."

# 截取1-4的索引位置的字符串
> str_sub(txt, 1, 4)
[1] "I am"

# 截取1-6的索引位置的字符串
> str_sub(txt, end=6)
[1] "I am C"

# 截取6到结束的索引位置的字符串
> str_sub(txt, 6)
[1] "Conan."

# 分2段截取字符串
> str_sub(txt, c(1, 4), c(6, 8))
[1] "I am C" "m Con" 

# 通过负坐标截取字符串
> str_sub(txt, -3)
[1] "an."
> str_sub(txt, end = -3)
[1] "I am Cona"

对截取的字符串进行赋值。


> x <- "AAABBBCCC"

# 在字符串的1的位置赋值为1
> str_sub(x, 1, 1) <- 1; x
[1] "1AABBBCCC"

# 在字符串从2到-2的位置赋值为2345
> str_sub(x, 2, -2) <- "2345"; x
[1] "12345C"

3.2 字符串计算函数

3.2.1 str_count, 字符串计数

函数定义:

str_count(string, pattern = "")

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配的字符。

对字符串中匹配的字符计数


> str_count('aaa444sssddd', "a")
[1] 3

对字符串向量中匹配的字符计数


> fruit <- c("apple", "banana", "pear", "pineapple")
> str_count(fruit, "a")
[1] 1 3 1 1
> str_count(fruit, "p")
[1] 2 0 1 3

对字符串中的'.'字符计数,由于.是正则表达式的匹配符,直接判断计数的结果是不对的。


> str_count(c("a.", ".", ".a.",NA), ".")
[1]  2  1  3 NA

# 用fixed匹配字符
> str_count(c("a.", ".", ".a.",NA), fixed("."))
[1]  1  1  2 NA

# 用\\匹配字符
> str_count(c("a.", ".", ".a.",NA), "\\.")
[1]  1  1  2 NA

3.2.2 str_length,字符串长度

函数定义:

str_length(string)

参数列表:

  • string: 字符串,字符串向量。

计算字符串的长度:


> str_length(c("I", "am", "张丹", NA))
[1]  1  2  2 NA

3.2.3 str_sort, 字符串值排序,同str_order索引排序

函数定义:


str_sort(x, decreasing = FALSE, na_last = TRUE, locale = "", ...)
str_order(x, decreasing = FALSE, na_last = TRUE, locale = "", ...)

参数列表:

  • x: 字符串,字符串向量。
  • decreasing: 排序方向。
  • na_last:NA值的存放位置,一共3个值,TRUE放到最后,FALSE放到最前,NA过滤处理
  • locale:按哪种语言习惯排序

对字符串值进行排序。


# 按ASCII字母排序
> str_sort(c('a',1,2,'11'), locale = "en")  
[1] "1"  "11" "2"  "a" 

# 倒序排序
> str_sort(letters,decreasing=TRUE)         
 [1] "z" "y" "x" "w" "v" "u" "t" "s" "r" "q" "p" "o" "n" "m" "l" "k" "j" "i" "h"
[20] "g" "f" "e" "d" "c" "b" "a"

# 按拼音排序
> str_sort(c('你','好','粉','丝','日','志'),locale = "zh")  
[1] "粉" "好" "你" "日" "丝" "志"

对NA值的排序处理


 #把NA放最后面
> str_sort(c(NA,'1',NA),na_last=TRUE) 
[1] "1" NA  NA
 
#把NA放最前面
> str_sort(c(NA,'1',NA),na_last=FALSE) 
[1] NA  NA  "1"

#去掉NA值 
> str_sort(c(NA,'1',NA),na_last=NA)    
[1] "1"

3.3 字符串匹配函数

3.3.1 str_split,字符串分割,同str_split_fixed

函数定义:


str_split(string, pattern, n = Inf)
str_split_fixed(string, pattern, n)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配的字符。
  • n: 分割个数

对字符串进行分割。


> val <- "abc,123,234,iuuu"

# 以,进行分割
> s1<-str_split(val, ",");s1
[[1]]
[1] "abc"  "123"  "234"  "iuuu"

# 以,进行分割,保留2块
> s2<-str_split(val, ",",2);s2
[[1]]
[1] "abc"          "123,234,iuuu"

# 查看str_split()函数操作的结果类型list
> class(s1)
[1] "list"

# 用str_split_fixed()函数分割,结果类型是matrix
> s3<-str_split_fixed(val, ",",2);s3
     [,1]  [,2]          
[1,] "abc" "123,234,iuuu"

> class(s3)
[1] "matrix"

3.3.2 str_subset:返回的匹配字符串

函数定义:

str_subset(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配的字符。

> val <- c("abc", 123, "cba")

# 全文匹配
> str_subset(val, "a")
[1] "abc" "cba"

# 开头匹配
> str_subset(val, "^a")
[1] "abc"

# 结尾匹配
> str_subset(val, "a$")
[1] "cba"

3.3.3 word, 从文本中提取单词

函数定义:

word(string, start = 1L, end = start, sep = fixed(" "))

参数列表:

  • string: 字符串,字符串向量。
  • start: 开始位置。
  • end: 结束位置。
  • sep: 匹配字符。

> val <- c("I am Conan.", "http://fens.me, ok")

# 默认以空格分割,取第一个位置的字符串
> word(val, 1)
[1] "I"               "http://fens.me,"
> word(val, -1)
[1] "Conan." "ok"    
> word(val, 2, -1)
[1] "am Conan." "ok"       

# 以,分割,取第一个位置的字符串 
> val<-'111,222,333,444'
> word(val, 1, sep = fixed(','))
[1] "111"
> word(val, 3, sep = fixed(','))
[1] "333"

3.3.4 str_detect匹配字符串的字符

函数定义:

str_detect(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。

> val <- c("abca4", 123, "cba2")

# 检查字符串向量,是否包括a
> str_detect(val, "a")
[1]  TRUE FALSE  TRUE

# 检查字符串向量,是否以a为开头
> str_detect(val, "^a")
[1]  TRUE FALSE FALSE

# 检查字符串向量,是否以a为结尾
> str_detect(val, "a$")
[1] FALSE FALSE FALSE

3.3.6 str_match,从字符串中提取匹配组

函数定义:


str_match(string, pattern)
str_match_all(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。

从字符串中提取匹配组


> val <- c("abc", 123, "cba")

# 匹配字符a,并返回对应的字符
> str_match(val, "a")
     [,1]
[1,] "a" 
[2,] NA  
[3,] "a" 

# 匹配字符0-9,限1个,并返回对应的字符
> str_match(val, "[0-9]")
     [,1]
[1,] NA  
[2,] "1" 
[3,] NA  

# 匹配字符0-9,不限数量,并返回对应的字符
> str_match(val, "[0-9]*")
     [,1] 
[1,] ""   
[2,] "123"
[3,] ""  

从字符串中提取匹配组,以字符串matrix格式返回


> str_match_all(val, "a")
[[1]]
     [,1]
[1,] "a" 

[[2]]
     [,1]

[[3]]
     [,1]
[1,] "a" 

> str_match_all(val, "[0-9]")
[[1]]
     [,1]

[[2]]
     [,1]
[1,] "1" 
[2,] "2" 
[3,] "3" 

[[3]]
     [,1]

3.3.7 str_replace,字符串替换

函数定义:

str_replace(string, pattern, replacement)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。
  • replacement: 用于替换的字符。

> val <- c("abc", 123, "cba")

# 把目标字符串第一个出现的a或b,替换为-
> str_replace(val, "[ab]", "-")
[1] "-bc" "123" "c-a"

# 把目标字符串所有出现的a或b,替换为-
> str_replace_all(val, "[ab]", "-")
[1] "--c" "123" "c--"

# 把目标字符串所有出现的a,替换为被转义的字符
> str_replace_all(val, "[a]", "\1\1")
[1] "\001\001bc" "123"        "cb\001\001"

3.3.8 str_replace_na把NA替换为NA字符串

函数定义:

str_replace_na(string, replacement = "NA")

参数列表:

  • string: 字符串,字符串向量。
  • replacement : 用于替换的字符。

把NA替换为字符串


> str_replace_na(c(NA,'NA',"abc"),'x')
[1] "x"   "NA"  "abc"

3.3.9 str_locate,找到的模式在字符串中的位置。

函数定义:

str_locate(string, pattern)
str_locate_all(string, pattern)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。

> val <- c("abca", 123, "cba")

# 匹配a在字符串中的位置
> str_locate(val, "a")
     start end
[1,]     1   1
[2,]    NA  NA
[3,]     3   3

# 用向量匹配
> str_locate(val, c("a", 12, "b"))
     start end
[1,]     1   1
[2,]     1   2
[3,]     2   2

# 以字符串matrix格式返回
> str_locate_all(val, "a")
[[1]]
     start end
[1,]     1   1
[2,]     4   4

[[2]]
     start end

[[3]]
     start end
[1,]     3   3

# 匹配a或b字符,以字符串matrix格式返回
> str_locate_all(val, "[ab]")
[[1]]
     start end
[1,]     1   1
[2,]     2   2
[3,]     4   4

[[2]]
     start end

[[3]]
     start end
[1,]     2   2
[2,]     3   3

3.3.10 str_extract从字符串中提取匹配模式

函数定义:

str_extract(string, pattern)
str_extract_all(string, pattern, simplify = FALSE)

参数列表:

  • string: 字符串,字符串向量。
  • pattern: 匹配字符。
  • simplify: 返回值,TRUE返回matrix,FALSE返回字符串向量

> val <- c("abca4", 123, "cba2")

# 返回匹配的数字
> str_extract(val, "\\d")
[1] "4" "1" "2"

# 返回匹配的字符
> str_extract(val, "[a-z]+")
[1] "abca" NA     "cba" 


> val <- c("abca4", 123, "cba2")
> str_extract_all(val, "\\d")
[[1]]
[1] "4"

[[2]]
[1] "1" "2" "3"

[[3]]
[1] "2"

> str_extract_all(val, "[a-z]+")
[[1]]
[1] "abca"

[[2]]
character(0)

[[3]]
[1] "cba"

3.4 字符串变换函数

3.4.1 str_conv:字符编码转换

函数定义:

str_conv(string, encoding)

参数列表:

  • string: 字符串,字符串向量。
  • encoding: 编码名。

对中文进行转码处理。


# 把中文字符字节化
> x <- charToRaw('你好');x
[1] c4 e3 ba c3

# 默认win系统字符集为GBK,GB2312为GBK字集,转码正常
> str_conv(x, "GBK")
[1] "你好"
> str_conv(x, "GB2312")
[1] "你好"

# 转UTF-8失败
> str_conv(x, "UTF-8")
[1] "���"
Warning messages:
1: In stri_conv(string, encoding, "UTF-8") :
  input data \xffffffc4 in current source encoding could not be converted to Unicode
2: In stri_conv(string, encoding, "UTF-8") :
  input data \xffffffe3\xffffffba in current source encoding could not be converted to Unicode
3: In stri_conv(string, encoding, "UTF-8") :
  input data \xffffffc3 in current source encoding could not be converted to Unicode

把unicode转UTF-8


> x1 <- "\u5317\u4eac"
> str_conv(x1, "UTF-8")
[1] "北京"

3.4.2 str_to_upper,字符串大写转换。

函数定义:


str_to_upper(string, locale = "")
str_to_lower(string, locale = "")
str_to_title(string, locale = "")

参数列表:

  • string: 字符串。
  • locale:按哪种语言习惯排序

字符串大写转换:


> val <- "I am conan. Welcome to my blog! http://fens.me"

# 全大写
> str_to_upper(val)
[1] "I AM CONAN. WELCOME TO MY BLOG! HTTP://FENS.ME"

# 全小写
> str_to_lower(val)
[1] "i am conan. welcome to my blog! http://fens.me"

# 首字母大写
> str_to_title(val)
[1] "I Am Conan. Welcome To My Blog! Http://Fens.Me"

字符串在平常的数据处理中经常用过,需要对字符串进行分割、连接、转换等操作,本篇中通过介绍stringr,灵活的字符串处理库,可以有效地提高代码的编写效率。有了好的工具,在用R语言处理字符串就顺手了。

转载请注明出处:
http://blog.fens.me/r-stringr/

打赏作者