用Maven构建Mahout项目

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mahout-maven-eclipse/

mahout-maven-logo

前言

基于Hadoop的项目,不管是MapReduce开发,还是Mahout的开发都是在一个复杂的编程环境中开发。Java的环境问题,是困扰着每个程序员的噩梦。Java程序员,不仅要会写Java程序,还要会调linux,会配hadoop,启动hadoop,还要会自己运维。所以,新手想玩起Hadoop真不是件简单的事。

不过,我们可以尽可能的简化环境问题,让程序员只关注于写程序。特别是像算法程序员,把精力投入在算法设计上,要比花时间解决环境问题有价值的多。

目录

  1. Maven介绍和安装
  2. Mahout单机开发环境介绍
  3. 用Maven构建Mahout开发环境
  4. 用Mahout实现协同过滤userCF
  5. 用Mahout实现kmeans
  6. 模板项目上传github

1. Maven介绍和安装

请参考文章:用Maven构建Hadoop项目

开发环境

  • Win7 64bit
  • Java 1.6.0_45
  • Maven 3
  • Eclipse Juno Service Release 2
  • Mahout 0.6

这里要说明一下mahout的运行版本。

  • mahout-0.5, mahout-0.6, mahout-0.7,是基于hadoop-0.20.2x的。
  • mahout-0.8, mahout-0.9,是基于hadoop-1.1.x的。
  • mahout-0.7,有一次重大升级,去掉了多个算法的单机内存运行,并且了部分API不向前兼容。

注:本文关注于“用Maven构建Mahout的开发环境”,文中的 2个例子都是基于单机的内存实现,因此选择0.6版本。Mahout在Hadoop集群中运行会在下一篇文章介绍。

2. Mahout单机开发环境介绍

hadoop-mahout-dev

如上图所示,我们可以选择在win中开发,也可以在linux中开发,开发过程我们可以在本地环境进行调试,标配的工具都是Maven和Eclipse。

3. 用Maven构建Mahout开发环境

  • 1. 用Maven创建一个标准化的Java项目
  • 2. 导入项目到eclipse
  • 3. 增加mahout依赖,修改pom.xml
  • 4. 下载依赖

1). 用Maven创建一个标准化的Java项目


~ D:\workspace\java>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes 
-DgroupId=org.conan.mymahout -DartifactId=myMahout -DpackageName=org.conan.mymahout -Dversion=1.0-SNAPSHOT -DinteractiveMode=false

进入项目,执行mvn命令


~ D:\workspace\java>cd myMahout
~ D:\workspace\java\myMahout>mvn clean install

2). 导入项目到eclipse

我们创建好了一个基本的maven项目,然后导入到eclipse中。 这里我们最好已安装好了Maven的插件。

mahout-eclipse-folder

3). 增加mahout依赖,修改pom.xml

这里我使用hadoop-0.6版本,同时去掉对junit的依赖,修改文件:pom.xml


<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.conan.mymahout</groupId>
<artifactId>myMahout</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>myMahout</name>
<url>http://maven.apache.org</url>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<mahout.version>0.6</mahout.version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>${mahout.version}</version>
</dependency>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-integration</artifactId>
<version>${mahout.version}</version>
<exclusions>
<exclusion>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.cassandra</groupId>
<artifactId>cassandra-all</artifactId>
</exclusion>
<exclusion>
<groupId>me.prettyprint</groupId>
<artifactId>hector-core</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</project>

4). 下载依赖

~ mvn clean install

在eclipse中刷新项目:

mahout-eclipse-package

项目的依赖程序,被自动加载的库路径下面。

4. 用Mahout实现协同过滤userCF

Mahout协同过滤UserCF深度算法剖析,请参考文章:用R解析Mahout用户推荐协同过滤算法(UserCF)

实现步骤:

  • 1. 准备数据文件: item.csv
  • 2. Java程序:UserCF.java
  • 3. 运行程序
  • 4. 推荐结果解读

1). 新建数据文件: item.csv


~ mkdir datafile
~ vi datafile/item.csv

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

数据解释:每一行有三列,第一列是用户ID,第二列是物品ID,第三列是用户对物品的打分。

2). Java程序:UserCF.java

Mahout协同过滤的数据流,调用过程。

mahout-recommendation-process

上图摘自:Mahout in Action

新建JAVA类:org.conan.mymahout.recommendation.UserCF.java


package org.conan.mymahout.recommendation;

import java.io.File;
import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class UserCF {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws IOException, TasteException {
        String file = "datafile/item.csv";
        DataModel model = new FileDataModel(new File(file));
        UserSimilarity user = new EuclideanDistanceSimilarity(model);
        NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
        Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
        LongPrimitiveIterator iter = model.getUserIDs();

        while (iter.hasNext()) {
            long uid = iter.nextLong();
            List list = r.recommend(uid, RECOMMENDER_NUM);
            System.out.printf("uid:%s", uid);
            for (RecommendedItem ritem : list) {
                System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
            }
            System.out.println();
        }
    }
}

3). 运行程序
控制台输出:


SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
uid:1(104,4.274336)(106,4.000000)
uid:2(105,4.055916)
uid:3(103,3.360987)(102,2.773169)
uid:4(102,3.000000)
uid:5

4). 推荐结果解读

  • 向用户ID1,推荐前二个最相关的物品, 104和106
  • 向用户ID2,推荐前二个最相关的物品, 但只有一个105
  • 向用户ID3,推荐前二个最相关的物品, 103和102
  • 向用户ID4,推荐前二个最相关的物品, 但只有一个102
  • 向用户ID5,推荐前二个最相关的物品, 没有符合的

5. 用Mahout实现kmeans

  • 1. 准备数据文件: randomData.csv
  • 2. Java程序:Kmeans.java
  • 3. 运行Java程序
  • 4. mahout结果解读
  • 5. 用R语言实现Kmeans算法
  • 6. 比较Mahout和R的结果

1). 准备数据文件: randomData.csv


~ vi datafile/randomData.csv

-0.883033363823402,-3.31967192630249
-2.39312626419456,3.34726861118871
2.66976353341256,1.85144276077058
-1.09922906899594,-6.06261735207489
-4.36361936997216,1.90509905380532
-0.00351835125495037,-0.610105996559153
-2.9962958796338,-3.60959839525735
-3.27529418132066,0.0230099799641799
2.17665594420569,6.77290756817957
-2.47862038335637,2.53431833167278
5.53654901906814,2.65089785582474
5.66257474538338,6.86783609641077
-0.558946883114376,1.22332819416237
5.11728525486132,3.74663871584768
1.91240516693351,2.95874731384062
-2.49747101306535,2.05006504756875
3.98781883213459,1.00780938946366

这里只截取了一部分,更多的数据请查看源代码。

注:我是通过R语言生成的randomData.csv


x1<-cbind(x=rnorm(400,1,3),y=rnorm(400,1,3))
x2<-cbind(x=rnorm(300,1,0.5),y=rnorm(300,0,0.5))
x3<-cbind(x=rnorm(300,0,0.1),y=rnorm(300,2,0.2))
x<-rbind(x1,x2,x3)
write.table(x,file="randomData.csv",sep=",",row.names=FALSE,col.names=FALSE)

2). Java程序:Kmeans.java

Mahout中kmeans方法的算法实现过程。

mahout-kmeans-process

上图摘自:Mahout in Action

新建JAVA类:org.conan.mymahout.cluster06.Kmeans.java


package org.conan.mymahout.cluster06;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.mahout.clustering.kmeans.Cluster;
import org.apache.mahout.clustering.kmeans.KMeansClusterer;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.Vector;

public class Kmeans {

    public static void main(String[] args) throws IOException {
        List sampleData = MathUtil.readFileToVector("datafile/randomData.csv");

        int k = 3;
        double threshold = 0.01;

        List randomPoints = MathUtil.chooseRandomPoints(sampleData, k);
        for (Vector vector : randomPoints) {
            System.out.println("Init Point center: " + vector);
        }

        List clusters = new ArrayList();
        for (int i = 0; i < k; i++) {
            clusters.add(new Cluster(randomPoints.get(i), i, new EuclideanDistanceMeasure()));
        }

        List<List> finalClusters = KMeansClusterer.clusterPoints(sampleData, clusters, new EuclideanDistanceMeasure(), k, threshold);
        for (Cluster cluster : finalClusters.get(finalClusters.size() - 1)) {
            System.out.println("Cluster id: " + cluster.getId() + " center: " + cluster.getCenter().asFormatString());
        }
    }

}

3). 运行Java程序
控制台输出:


Init Point center: {0:-0.162693685149196,1:2.19951550286862}
Init Point center: {0:-0.0409782183083317,1:2.09376666042057}
Init Point center: {0:0.158401778474687,1:2.37208412905273}
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
Cluster id: 0 center: {0:-2.686856800552941,1:1.8939462954763795}
Cluster id: 1 center: {0:0.6334255423230666,1:0.49472852972602105}
Cluster id: 2 center: {0:3.334520309711998,1:3.2758355898247653}

4). mahout结果解读

  • 1. Init Point center表示,kmeans算法初始时的设置的3个中心点
  • 2. Cluster center表示,聚类后找到3个中心点

5). 用R语言实现Kmeans算法
接下来为了让结果更直观,我们再用R语言,进行kmeans实验,操作相同的数据。

R语言代码:


> y<-read.csv(file="randomData.csv",sep=",",header=FALSE) 
> cl<-kmeans(y,3,iter.max = 10, nstart = 25) 
> cl$centers
          V1         V2
1 -0.4323971  2.2852949
2  0.9023786 -0.7011153
3  4.3725463  2.4622609

# 生成聚类中心的图形
> plot(y, col=c("black","blue","green")[cl$cluster])
> points(cl$centers, col="red", pch = 19)

# 画出Mahout聚类的中心
> mahout<-matrix(c(-2.686856800552941,1.8939462954763795,0.6334255423230666,0.49472852972602105,3.334520309711998,3.2758355898247653),ncol=2,byrow=TRUE) 
> points(mahout, col="violetred", pch = 19)

聚类的效果图:
kmeans-center

6). 比较Mahout和R的结果
从上图中,我们看到有 黑,蓝,绿,三种颜色的空心点,这些点就是原始的数据。

3个红色实点,是R语言kmeans后生成的3个中心。
3个紫色实点,是Mahout的kmeans后生成的3个中心。

R语言和Mahout生成的点,并不是重合的,原因有几点:

  • 1. 距离算法不一样:
    Mahout中,我们用的 “欧氏距离(EuclideanDistanceMeasure)”
    R语言中,默认是”Hartigan and Wong”
  • 2. 初始化的中心是不一样的。
  • 3. 最大迭代次数是不一样的。
  • 4. 点合并时,判断的”阈值(threshold)”是不一样的。

6. 模板项目上传github

https://github.com/bsspirit/maven_mahout_template/tree/mahout-0.6

大家可以下载这个项目,做为开发的起点。

 
~ git clone https://github.com/bsspirit/maven_mahout_template
~ git checkout mahout-0.6

我们完成了第一步,下面就将正式进入mahout算法的开发实践,并且应用到hadoop集群的环境中。

下一篇:Mahout分步式程序开发 基于物品的协同过滤ItemCF

转载请注明出处:
http://blog.fens.me/hadoop-mahout-maven-eclipse/

打赏作者

This entry was posted in Hadoop实践, JAVA语言实践, 数据挖掘, 架构设计, 程序算法

0 0 votes
Article Rating
Subscribe
Notify of
guest

This site uses Akismet to reduce spam. Learn how your comment data is processed.

30 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

[…] 用Maven构建Mahout项目 […]

[…] 用Maven构建Mahout项目 […]

[…] 用Maven构建Mahout项目 […]

[…] 单机内存算法实现:就是在单机下运行的算法,是由cf.taste项目实现的,像我的们熟悉的UserCF,ItemCF都支持单机内存运行,并且参数可以灵活配置。单机算法的基本实例,请参考文章:用Maven构建Mahout项目 […]

zeng

If you want to cop a buzz, go talk to Conan.

[…] 开发环境mahout版本为0.8。 ,请参考文章:用Maven构建Mahout项目 […]

zp

Nice tutorial! And it is good to see references are annoted.

Conan Zhang

🙂

qwe402498266

List list = r.recommend(uid, RECOMMENDER_NUM);

qinsheng

您好,我正在学习您的分布式itemCF,但是运行hadoop,只打印出来job配置信息,并不执行job,请问您了解是什么情况吗?劳烦赐教。。

Conan Zhang

描述太简单,看不出问题。

qinsheng

你好,我先说明一下,我用的是CDH5套装,我下载的也是相适应的mahout包,刚才那个问题我已经解决,是因为mahout兼容问题,去掉了–booleanData之类的参数输入,我现在是把关联的mahout的jar一块打包去集群运行的,但是现在爆出说输入文件不是sequencefile格式,还有就是如果集群安装了mahout是不是不用把关联jar一起打包运行?只打自己写的类就行?多谢回答。

Conan Zhang

1. –booleanData,是控制是否包括preferenceValue值的。
2. 只打自己写的类就行了。

qinsheng

但是只打包自己的类,mahout类说找不到定义,是不是需要集群安装mahout或者添加到classpath中?现在说我的输入文件不是sequencefile格式怎么搞?遇见过吗?

Conan Zhang

1. mahout的项目,要用mahout的命令去启动
2. mahout的命令行参数,有一项是sequencefile

qinsheng

好,万分感谢,我调试试试,感谢你的热心帮助。

qinsheng

如何添加那个参数?能指教一下吗?

Conan Zhang
qinsheng

好,谢谢你耐心回答。

qinsheng

mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i /path/to/input/file -o /path/to/desired/output –numRecommendations 25,我直接执行mahout里面的算法把我的数据导入就能成功,但是咱们这个例子成功不了,是不是不兼容导致?

qinsheng

咱们用的als recommandations算法。。。

qinsheng

实在不好意思,我import错包了,我调用的是als包。。。。感谢你的回答。。

Guo

我修改xml文档之后(增加mahout依赖,修改XML文档哪一步) 执行mvn clean install就会出现 程序包junit.framework不存在的错误提示 您能告诉我这是什么问题吗 怎么解决 万谢

Conan Zhang

junit.framework,是不是写错了?

scriptin

perfect blog

Conan Zhang

🙂

zacker

hi. Where is class MathUtil coming from?

Conan Zhang

代码都在git项目里面。

xiefg

聚类的效果图是程序直接运行出来的吗?

Conan Zhang

用R画的。

30
0
Would love your thoughts, please comment.x
()
x