• 活动聚会 »
  • 宽客挑战赛: 量化投资基础知识12题

宽客挑战赛: 量化投资基础知识12题

跨界知识聚会系列文章,“知识是用来分享和传承的”,各种会议、论坛、沙龙都是分享知识的绝佳场所。我也有幸作为演讲嘉宾参加了一些国内的大型会议,向大家展示我所做的一些成果。从听众到演讲感觉是不一样的,把知识分享出来,你才能收获更多。

关于作者:

  • 张丹(Conan), 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/meeting-quant-20180315

前言

本次与“量化投资与机器学习”微信公众号合作,进行宽客挑战赛(第二期)!我来出题,大家大回答!

这期的挑战有点难度哦,全答对算你厉害!!

目录

  1. 答题规则
  2. 答题开始
  3. 公布答案
  4. 获奖名单

1. 答题规则

本次与“量化投资与机器学习”微信公众号合作,进行宽客挑战赛(第二期),答题页的链接

参与规则

  1. 请点击文末写留言,将答案发送至后台。
  2. 我们会根据后台用户提交答案的时间顺序,选出全部回答正确的前5位用户,并免费赠送这本丛书。
  3. 我们会在2017.03.19—07点公布答案(第一条置顶留言)

本次奖励,我的新书:《R的极客理想:量化投资篇》



2. 答题开始

1、black-litterman 的统计学算法基础是?

a. 均值方差模型

b. 贝叶斯模型

c. arima模型

d. 神经网络

2、哪个包是R语言中,用于计算技术指标的?

a. xts

b. WindR

c. quantmod

d. TTR

3、基于APT理论进行配对交易时,错误配对方法是?

a. 沪深300指数基金,IF股指期货合约

b. 铜CU1804合约,铜CU1805合约

c. A股工商银行,H股工商银行

d. 国债指数,回购GC001

4、可转债的负溢价率套利,正确的描述是?

a. 正股价格大于可转债价格

b. 正股价格小于可转债价格

c, 转股价值大于可转债价格

d, 转股价值小于可转债价格

5、2个人a和b合伙投资炒股,开始各入金50w股权各占50%,6个月后赚了50w,b继续追加投资60w,问a和b的股权比例?

a. a:b=5:12

b. a:b=5:11

c. a:b=5:9

d. a:b=5:7

6、对线性回归模型进行调优进时,不需要看指标是?

a. AIC

b. ROC

c. p-value

d. R-squared

7、某只指数跟踪的量化基金,其beta合理取值为?

a. 0.5

b. 1

c. 1.5

d. 2

8、期货交易时,人为降杠杠的方法是?

a. 用现货对冲

b. 只用1/n的资金交易,留有大部分现金,n为杠杠倍数

c. 同时开多单和空单,双向操作

d. 要求期货公司开通不加杠杠的通道

9、股票分红时,10派10转10,错误的描述是?

a. 转10,是指公司用资本公积金对于股东每10股转增10股。

b. 派10,是指公司用未分配利润每10股现金分红10元。

c. 你有100股,分红后,你将变成200股和100元现金

d. 分红后,股票价格会下降

10、用机器学习的方法建模,回测很好为什么实盘会不好?

a. 过拟合

b. 未来函数

c. 滑点

d. 以上都有可能

11、假设赌局: 你赢的概率是60%,下注1元,赢时可获得2元,输时下注的1元就没了。你的本金是100元,赌局可无限次,根据凯里公式最优的仓位比例是多少?

a. 10%

b. 20%

c. 40%

d. 60%

12、标普500的期望收益率是12%,无风险利率为5%,下面投资组合回报率最高的是哪个?

a. beta=0.2

b. beta=0.5

c. beta=1.1

d. beta=1.4

3. 公布答案

2017.03.19—07点公布答案!!

1-6: BDDCCB
7-12: BBCDBD

4. 获奖名单

请查看主办方的公众号,链接, 在微信里看。

注大家答题愉快!

写文章很辛苦,如果需要获得本文源代码或加入量化投资社群,请扫下面二维码,请作者喝杯咖啡。

转载请注明出处:
http://blog.fens.me/meeting-quant-20180315

打赏作者

This entry was posted in 活动聚会, 金融

0 0 votes
Article Rating
Subscribe
Notify of
guest

This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x