• Posts tagged "apply"

Blog Archives

超高性能数据处理包data.table

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-data-table/

datatable-title

前言

在R语言中,我们最常用的数据类型是data.frame,绝大多数的数据处理的操作都是围绕着data.frame结构来做的。用data.frame可以很方便的进行数据存储和数据查询,配合apply族函数对数据循环计算,也可也用plyr, reshape2, melt等包对数据实现切分、分组、聚合等的操作。在数据量不太大的时候,使用起来很方便。但是,用data.frame结构处理数据时并不是很高效,特别是在稍大一点数据规模的时候,就会明显变慢。

data.table其实提供了一套和data.frame类似的功能,特别增加了索引的设置,让数据操作非常高效,可能会提升1-2数量级。本章就将data.table包的使用方法。

目录

  1. data.table包介绍
  2. data.table包的使用
  3. data.table包性能对比

1. data.table包介绍

data.table包是一个data.frame的扩展工具集,可以通过自定义keys来设置索引,实现高效的数据索引查询、快速分组、快速连接、快速赋值等数据操作。data.table主要通过二元检索法大大提高数据操作的效率,它也兼容适用于data.frame的向量检索法。同时,data.table对于大数据的快速聚合也有很好的效果,官方介绍说对于 100GB规模内存数据处理,运行效率还是很好的。那么,就让我们试验一下吧。

data.table项目地址:https://cran.r-project.org/web/packages/data.table/

本文所使用的系统环境

  • Win10 64bit
  • R: 3.2.3 x86_64-w64-mingw32/x64 b4bit

data.table包是在CRAN发布的标准库,安装起来非常简单,2条命令就可以了。


~ R
> install.packages("data.table")
> library(data.table)

2. data.table包的使用

接下来,开始用data.table包,并熟悉一下data.table包的基本操作。

2.1 用data.table创建数据集

通常情况,我们用data.frame创建一个数据集时,可以使用下面的语法。


# 创建一个data.frame数据框
> df<-data.frame(a=c('A','B','C','A','A','B'),b=rnorm(6))
> df
  a          b
1 A  1.3847248
2 B  0.6387315
3 C -1.8126626
4 A -0.0265709
5 A -0.3292935
6 B -1.0891958

对于data.table来说,创建一个数据集是和data.frame同样语法。


# 创建一个data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a           b
1: A  0.09174236
2: B -0.84029180
3: C -0.08157873
4: A -0.39992084
5: A -1.66034154
6: B -0.33526447

检查df, dt两个对象的类型,可以看到data.table是对data.frame的扩展类型。


# data.frame类型
> class(df)
[1] "data.frame"

# data.table类型
> class(dt)
[1] "data.table" "data.frame"

如果data.table仅仅是对data.frame的做了S3的扩展类型,那么data.table是不可能做到对data.frame从效率有极大的改进的。为了验证,我们需要检查一下data.table代码的结构定义。


# 打印data.table函数定义
> data.table
function (..., keep.rownames = FALSE, check.names = FALSE, key = NULL) 
{
    x <- list(...)
    if (!.R.listCopiesNamed) 
        .Call(CcopyNamedInList, x)
    if (identical(x, list(NULL)) || identical(x, list(list())) || 
        identical(x, list(data.frame(NULL))) || identical(x, 
        list(data.table(NULL)))) 
        return(null.data.table())
    tt <- as.list(substitute(list(...)))[-1L]
    vnames = names(tt)
    if (is.null(vnames)) 
        vnames = rep.int("", length(x))
    vnames[is.na(vnames)] = ""
    novname = vnames == ""
    if (any(!novname)) {
        if (any(vnames[!novname] == ".SD")) 
            stop("A column may not be called .SD. That has special meaning.")
    }
    for (i in which(novname)) {
        if (is.null(ncol(x[[i]]))) {
            if ((tmp <- deparse(tt[[i]])[1]) == make.names(tmp)) 
                vnames[i] <- tmp
        }
    }
    tt = vnames == ""
    if (any(tt)) 
        vnames[tt] = paste("V", which(tt), sep = "")
    n <- length(x)
    if (n < 1L) 
        return(null.data.table())
    if (length(vnames) != n) 
        stop("logical error in vnames")
    vnames <- as.list.default(vnames)
    nrows = integer(n)
    numcols = integer(n)
    for (i in seq_len(n)) {
        xi = x[[i]]
        if (is.null(xi)) 
            stop("column or argument ", i, " is NULL")
        if ("POSIXlt" %chin% class(xi)) {
            warning("POSIXlt column type detected and converted to POSIXct. We do not recommend use of POSIXlt at all because it uses 40 bytes to store one date.")
            x[[i]] = as.POSIXct(xi)
        }
        else if (is.matrix(xi) || is.data.frame(xi)) {
            xi = as.data.table(xi, keep.rownames = keep.rownames)
            x[[i]] = xi
            numcols[i] = length(xi)
        }
        else if (is.table(xi)) {
            x[[i]] = xi = as.data.table.table(xi, keep.rownames = keep.rownames)
            numcols[i] = length(xi)
        }
        nrows[i] <- NROW(xi)
        if (numcols[i] > 0L) {
            namesi <- names(xi)
            if (length(namesi) == 0L) 
                namesi = rep.int("", ncol(xi))
            namesi[is.na(namesi)] = ""
            tt = namesi == ""
            if (any(tt)) 
                namesi[tt] = paste("V", which(tt), sep = "")
            if (novname[i]) 
                vnames[[i]] = namesi
            else vnames[[i]] = paste(vnames[[i]], namesi, sep = ".")
        }
    }
    nr <- max(nrows)
    ckey = NULL
    recycledkey = FALSE
    for (i in seq_len(n)) {
        xi = x[[i]]
        if (is.data.table(xi) && haskey(xi)) {
            if (nrows[i] < nr) 
                recycledkey = TRUE
            else ckey = c(ckey, key(xi))
        }
    }
    for (i in which(nrows < nr)) {
        xi <- x[[i]]
        if (identical(xi, list())) {
            x[[i]] = vector("list", nr)
            next
        }
        if (nrows[i] == 0L) 
            stop("Item ", i, " has no length. Provide at least one item (such as NA, NA_integer_ etc) to be repeated to match the ", 
                nr, " rows in the longest column. Or, all columns can be 0 length, for insert()ing rows into.")
        if (nr%%nrows[i] != 0L) 
            warning("Item ", i, " is of size ", nrows[i], " but maximum size is ", 
                nr, " (recycled leaving remainder of ", nr%%nrows[i], 
                " items)")
        if (is.data.frame(xi)) {
            ..i = rep(seq_len(nrow(xi)), length.out = nr)
            x[[i]] = xi[..i, , drop = FALSE]
            next
        }
        if (is.atomic(xi) || is.list(xi)) {
            x[[i]] = rep(xi, length.out = nr)
            next
        }
        stop("problem recycling column ", i, ", try a simpler type")
        stop("argument ", i, " (nrow ", nrows[i], ") cannot be recycled without remainder to match longest nrow (", 
            nr, ")")
    }
    if (any(numcols > 0L)) {
        value = vector("list", sum(pmax(numcols, 1L)))
        k = 1L
        for (i in seq_len(n)) {
            if (is.list(x[[i]]) && !is.ff(x[[i]])) {
                for (j in seq_len(length(x[[i]]))) {
                  value[[k]] = x[[i]][[j]]
                  k = k + 1L
                }
            }
            else {
                value[[k]] = x[[i]]
                k = k + 1L
            }
        }
    }
    else {
        value = x
    }
    vnames <- unlist(vnames)
    if (check.names) 
        vnames <- make.names(vnames, unique = TRUE)
    setattr(value, "names", vnames)
    setattr(value, "row.names", .set_row_names(nr))
    setattr(value, "class", c("data.table", "data.frame"))
    if (!is.null(key)) {
        if (!is.character(key)) 
            stop("key argument of data.table() must be character")
        if (length(key) == 1L) {
            key = strsplit(key, split = ",")[[1L]]
        }
        setkeyv(value, key)
    }
    else {
        if (length(ckey) && !recycledkey && !any(duplicated(ckey)) && 
            all(ckey %in% names(value)) && !any(duplicated(names(value)[names(value) %in% 
            ckey]))) 
            setattr(value, "sorted", ckey)
    }
    alloc.col(value)
}
<bytecode: 0x0000000017bfb990>
<environment: namespace:data.table>

从上面的整个大段代码来看,data.table的代码定义中并没有使用data.frame结构的依赖的代码,data.table都在自己函数定义中做的数据处理,所以我们可以确认data.table和data.frame的底层结果是不一样的。

那么为什么从刚刚用class函数检查data.table对象时,会看到data.table和data.frame的扩展关系呢?这里就要了解R语言中对于S3面向对象系统的结构设计了,关于S3的面向对象设计,请参考文章R语言基于S3的面向对象编程

从上面代码中,倒数第17行找到 setattr(value, "class", c("data.table", "data.frame")) 这行,发现这个扩展的定义是作者主动设计的,那么其实就可以理解为,data.table包的作者希望data.table使用起来更像data.frame,所以通过一些包装让使用者无切换成本的。

2.2 data.table和data.frame相互转换

如果想把data.frame对象和data.table对象进行转换,转换的代码是非常容易的,直接转换就可以了。

从一个data.frame对象转型到data.table对象。


# 创建一个data.frame对象
> df<-data.frame(a=c('A','B','C','A','A','B'),b=rnorm(6))

# 检查类型
> class(df)
[1] "data.frame"

# 转型为data.table对象
> df2<-data.table(df)

# 检查类型
> class(df2)
[1] "data.table" "data.frame"

从一个data.table对象转型到data.frame对象。


# 创建一个data.table对象
> dt <- data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))

# 检查类型
> class(dt)
[1] "data.table" "data.frame"

# 转型为data.frame对象
> dt2<-data.frame(dt)

# 检查类型
> class(dt2)
[1] "data.frame"

2.3 用data.table进行查询

由于data.table对用户使用上是希望和data.frame的操作尽量相似,所以适用于data.frame的查询方法基本都适用于data.table,同时data.table自己具有的一些特性,提供了自定义keys来进行高效的查询。

下面先看一下,data.table基本的数据查义方法。


# 创建一个data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a          b
1: A  0.7792728
2: B  1.4870693
3: C  0.9890549
4: A -0.2769280
5: A -1.3009561
6: B  1.1076424

按行或按列查询


# 取第二行的数据
> dt[2,]
   a        b
1: B 1.487069

# 不加,也可以
> dt[2]
   a        b
1: B 1.487069


# 取a列的值
> dt$a
[1] "A" "B" "C" "A" "A" "B"

# 取a列中值为B的行
> dt[a=="B",]
   a        b
1: B 1.487069
2: B 1.107642

# 取a列中值为B的行的判断
> dt[,a=='B']
[1] FALSE  TRUE FALSE FALSE FALSE  TRUE

# 取a列中值为B的行的索引
> which(dt[,a=='B'])
[1] 2 6

上面的操作,不管是用索引值,== 和 $ 都是data.frame操作一样的。下面我们取data.table特殊设计的keys来查询。


# 设置a列为索引列
> setkey(dt,a)

# 打印dt对象,发现数据已经按照a列字母对应ASCII码值进行了排序。
> dt
   a          b
1: A  0.7792728
2: A -0.2769280
3: A -1.3009561
4: B  1.4870693
5: B  1.1076424
6: C  0.9890549

按照自定义的索引进行查询。


# 取a列中值为B的行
> dt["B",]
   a        b
1: B 1.487069
2: B 1.107642

# 取a列中值为B的行,并保留第一行
> dt["B",mult="first"]
   a        b
1: B 1.487069

# 取a列中值为B的行,并保留最后一行
> dt["B",mult="last"]
   a        b
1: B 1.107642

# 取a列中值为b的行,没有数据则为NA
> dt["b"]
   a  b
1: b NA

从上面的代码测试中我们可以看出,在定义了keys后,我们要查询的时候就不用再指定列了,默认会把方括号中的第一位置留给keys,作为索引匹配的查询条件。从代码的角度,又节省了一个变量定义的代码。同时,可以用mult参数,对数据集增加过滤条件,让代码本身也变得更高效。如果查询的值,不是索引列包括的值,则返回NA。

2.4 对data.table对象进行增、删、改操作

给data.table对象增加一列,可以使用这样的格式 data.table[, colname := var1]。


# 创建data.table对象
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a           b
1: A  1.51765578
2: B  0.01182553
3: C  0.71768667
4: A  0.64578235
5: A -0.04210508
6: B  0.29767383

# 增加1列,列名为c
> dt[,c:=b+2]
> dt
   a           b        c
1: A  1.51765578 3.517656
2: B  0.01182553 2.011826
3: C  0.71768667 2.717687
4: A  0.64578235 2.645782
5: A -0.04210508 1.957895
6: B  0.29767383 2.297674

# 增加2列,列名为c1,c2
> dt[,`:=`(c1 = 1:6, c2 = 2:7)]
> dt
   a          b        c c1 c2
1: A  0.7545555 2.754555  1  2
2: B  0.5556030 2.555603  2  3
3: C -0.1080962 1.891904  3  4
4: A  0.3983576 2.398358  4  5
5: A -0.9141015 1.085899  5  6
6: B -0.8577402 1.142260  6  7

# 增加2列,第2种写法
> dt[,c('d1','d2'):=list(1:6,2:7)]
> dt
   a          b        c c1 c2 d1 d2
1: A  0.7545555 2.754555  1  2  1  2
2: B  0.5556030 2.555603  2  3  2  3
3: C -0.1080962 1.891904  3  4  3  4
4: A  0.3983576 2.398358  4  5  4  5
5: A -0.9141015 1.085899  5  6  5  6
6: B -0.8577402 1.142260  6  7  6  7

给data.table对象删除一列时,就是给这列赋值为空,使用这样的格式 data.table[, colname := NULL]。我们继续使用刚才创建的dt对象。


# 删除c1列
> dt[,c1:=NULL]
> dt
   a          b        c c2 d1 d2
1: A  0.7545555 2.754555  2  1  2
2: B  0.5556030 2.555603  3  2  3
3: C -0.1080962 1.891904  4  3  4
4: A  0.3983576 2.398358  5  4  5
5: A -0.9141015 1.085899  6  5  6
6: B -0.8577402 1.142260  7  6  7

# 同时删除d1,d2列
> dt[,c('d1','d2'):=NULL]
> dt
   a          b        c c2
1: A  0.7545555 2.754555  2
2: B  0.5556030 2.555603  3
3: C -0.1080962 1.891904  4
4: A  0.3983576 2.398358  5
5: A -0.9141015 1.085899  6
6: B -0.8577402 1.142260  7

修改data.table对象的值,就是通过索引定位后进行值的替换,通过这样的格式 data.table[condition, colname := 0]。我们继续使用刚才创建的dt对象。


# 给b赋值为30
> dt[,b:=30]
> dt
   a  b        c c2
1: A 30 2.754555  2
2: B 30 2.555603  3
3: C 30 1.891904  4
4: A 30 2.398358  5
5: A 30 1.085899  6
6: B 30 1.142260  7

# 对a列值为B的行,c2列值值大于3的行,的b列赋值为100
> dt[a=='B' & c2>3, b:=100]
> dt
   a   b        c c2
1: A  30 2.754555  2
2: B  30 2.555603  3
3: C  30 1.891904  4
4: A  30 2.398358  5
5: A  30 1.085899  6
6: B 100 1.142260  7

# 还有另一种写法
> dt[,b:=ifelse(a=='B' & c2>3,50,b)]
> dt
   a  b        c c2
1: A 30 2.754555  2
2: B 30 2.555603  3
3: C 30 1.891904  4
4: A 30 2.398358  5
5: A 30 1.085899  6
6: B 50 1.142260  7

2.5 data.table的分组计算

基于data.frame对象做分组计算时,要么使用apply函数自己处理,要么用plyr包的分组计算功能。对于data.table包本身就支持了分组计算,很像SQL的group by这样的功能,这是data.table包主打的优势。

比如,按a列分组,并对b列按分组求和。


# 创建数据
> dt = data.table(a=c('A','B','C','A','A','B'),b=rnorm(6))
> dt
   a          b
1: A  1.4781041
2: B  1.4135736
3: C -0.6593834
4: A -0.1231766
5: A -1.7351749
6: B -0.2528973

# 对整个b列数据求和
> dt[,sum(b)]
[1] 0.1210455

# 按a列分组,并对b列按分组求和
> dt[,sum(b),by=a]
   a         V1
1: A -0.3802474
2: B  1.1606763
3: C -0.6593834

2.6 多个data.table的连接操作

在操作数据的时候,经常会出现2个或多个数据集通过一个索引键进行关联,而我们的算法要把多种数据合并到一起再进行处理,那么这个时候就会用的数据的连接操作,类似关系型数据库的左连接(LEFT JOIN)。

举个例子,学生考试的场景。按照ER设计方法,我们通常会按照实体进行数据划分。这里存在2个实体,一个是学生,一个是成绩。学生实体会包括,学生姓名等的基本资料,而成绩实体会包括,考试的科目,考试的成绩。

假设有6个学生,分别参加A和B两门考试,每门考试得分是不一样的。


# 6个学生
> student <- data.table(id=1:6,name=c('Dan','Mike','Ann','Yang','Li','Kate'));student
   id name
1:  1  Dan
2:  2 Mike
3:  3  Ann
4:  4 Yang
5:  5   Li
6:  6 Kate

# 分别参加A和B两门考试
> score <- data.table(id=1:12,stuId=rep(1:6,2),score=runif(12,60,99),class=c(rep('A',6),rep('B',6)));score
    id stuId    score class
 1:  1     1 89.18497     A
 2:  2     2 61.76987     A
 3:  3     3 74.67598     A
 4:  4     4 64.08165     A
 5:  5     5 85.00035     A
 6:  6     6 95.25072     A
 7:  7     1 81.42813     B
 8:  8     2 82.16083     B
 9:  9     3 69.53405     B
10: 10     4 89.01985     B
11: 11     5 96.77196     B
12: 12     6 97.02833     B

通过学生ID,把学生和考试成绩2个数据集进行连接。


# 设置score数据集,key为stuId
> setkey(score,"stuId")

# 设置student数据集,key为id
> setkey(student,"id")

# 合并两个数据集的数据
> student[score,nomatch=NA,mult="all"]
    id name i.id    score class
 1:  1  Dan    1 89.18497     A
 2:  1  Dan    7 81.42813     B
 3:  2 Mike    2 61.76987     A
 4:  2 Mike    8 82.16083     B
 5:  3  Ann    3 74.67598     A
 6:  3  Ann    9 69.53405     B
 7:  4 Yang    4 64.08165     A
 8:  4 Yang   10 89.01985     B
 9:  5   Li    5 85.00035     A
10:  5   Li   11 96.77196     B
11:  6 Kate    6 95.25072     A
12:  6 Kate   12 97.02833     B

最后我们会看到,两个数据集的结果合并在了一个结果数据集中。这样就完成了,数据连接的操作。从代码的角度来看,1行代码要比用data.frame去拼接方便的多。

3. data.table包性能对比

现在很多时候我们需要处理的数据量是很大的,动辄上百万行甚至上千万行。如果我们要使用R对其进行分析或处理,在不增加硬件的条件下,就需要用一些高性能的数据包进行数据的操作。这里就会发现data.table是非常不错的一个选择。

3.1 data.table和data.frame索引查询性能对比

我们先生成一个稍大数据集,包括2列x和y分别用英文字母进行赋值,100,000,004行,占内存大小1.6G。分别比较data.frame操作和data.table操作的索引查询性能耗时。

使用data.frame创建数据集。


# 清空环境变量
> rm(list=ls())

# 设置大小
> size = ceiling(1e8/26^2)
[1] 147929

# 计算data.frame对象生成的时间 
> t0=system.time(
+   df <- data.frame(x=rep(LETTERS,each=26*size),y=rep(letters,each=size))
+ )

# 打印时间
> t0
用户 系统 流逝 
3.63 0.18 3.80 

# df对象的行数
> nrow(df)
[1] 100000004

# 占用内存
> object.size(df)
1600003336 bytes

# 进行条件查询
> t1=system.time(
+   val1 <- dt[dt$x=="R" & dt$y=="h",]
+ )

# 查询时间
> t1
用户 系统 流逝 
8.53 0.84 9.42 

再使用data.table创建数据集。


# 清空环境变量
> rm(list=ls())

# 设置大小
> size = ceiling(1e8/26^2)
[1] 147929

# 计算data.table对象生成的时间 
> t3=system.time(
+   dt <- data.table(x=rep(LETTERS,each=26*size),y=rep(letters,each=size))
+ )

# 生成对象的时间
> t3
用户 系统 流逝 
3.22 0.39 3.63 

# 对象行数
> nrow(dt)
[1] 100000004

# 占用内存
> object.size(dt)
2000004040 bytes

# 进行条件查询
> t3=system.time(
+ val2 <- dt[x=="R" & y=="h",]
+ )

# 查询时间
> t3
用户 系统 流逝 
6.52 0.26 6.80 

从上面的测试来看,创建对象时,data.table比data.frame显著的高效,而查询效果则并不明显。我们对data.table数据集设置索引,试试有索引查询的效果。


# 设置key索引列为x,y
> setkey(dt,x,y)

# 条件查询
> t4=system.time(
+   val3  <- dt[list("R","h")]
+ )

# 查看时间
> t4
用户 系统 流逝 
0.00 0.00 0.06 

设置索引列后,按索引进行查询,无CPU耗时。震惊了!!

3.2 data.table和data.frame的赋值性能对比

对于赋值操作来说,通常会分为2个动作,先查询再值替换,对于data.frame和data.table都是会按照这个过程来实现的。从上一小节中,可以看到通过索引查询时data.table比data.frame明显的速度要快,对于赋值的操作测试,我们就要最好避免复杂的查询。

对x列值为R的行,对应的y的值进行赋值。首先测试data.frame的计算时间。


> size = 1000000
> df <- data.frame(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+   df$y[which(df$x=='R')]<-10
+ )
用户 系统 流逝 
0.75 0.01 0.77 

计算data.table的赋值时间。


> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+   dt[x=='R', y:=10]
+ )
用户 系统 流逝 
0.11 0.00 0.11 
> setkey(dt,x)
> system.time(
+   dt['R', y:=10]
+ )
用户 系统 流逝 
0.01 0.00 0.02 

通过对比data.table和data.frame的赋值测试,有索引的data.table性能优势是非常明显的。我们增大数据量,再做一次赋值测试。


> size = 1000000*5
> df <- data.frame(x=rep(LETTERS,each=size),y=rnorm(26*size))
> system.time(
+   df$y[which(df$x=='R')]<-10
+ )
用户 系统 流逝 
3.22 0.25 3.47 

> rm(list=ls())
> size = 1000000*5
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> setkey(dt,x)
> system.time(
+   dt['R', y:=10]
+ )
用户 系统 流逝 
0.08 0.01 0.08 

对于增加数据量后data.table,要比data.frame的赋值快更多倍。

3.3 data.table和tapply分组计算性能对比

再对比一下data.table处理数据和tapply的分组计算的性能。测试同样地只做一个简单的计算设定,比如,对一个数据集按x列分组对y列求和。


# 设置数据集大小
> size = 100000
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))

# 设置key为x列
> setkey(dt,x)

# 计算按x列分组,对y列的求和时间
> system.time(
+ r1<-dt[,sum(y),by=x]
+ )
用户 系统 流逝 
0.03 0.00 0.03 

# 用tapply实现,计算求和时间
> system.time(
+ r2<-tapply(dt$y,dt$x,sum)
+ )
用户 系统 流逝 
0.25 0.05 0.30 

# 查看数据集大小, 40mb
> object.size(dt)
41602688 bytes

对于40mb左右的数据来说,tapply比data.table要快,那么我增加数据集的大小,给size*10再测试一下。


> size = 100000*10
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> setkey(dt,x)
> val3<-dt[list("R")]
 
> system.time(
+   r1<-dt[,sum(y),by=x]
+ )
用户 系统 流逝 
0.25 0.03 0.28 

> system.time(
+   r2<-tapply(dt$y,dt$x,sum)
+ )
用户 系统 流逝 
2.56 0.36 2.92 

# 400mb数据 
> object.size(dt)
416002688 bytes

对于400mb的数据来说,data.table的计算性能已经明显优于tapply了,再把数据时增加让size*5。


> size = 100000*10*5
> dt <- data.table(x=rep(LETTERS,each=size),y=rnorm(26*size))
> setkey(dt,x)
 
> system.time(
+     r1<-dt[,sum(y),by=x]
+ )
用户 系统 流逝 
1.50 0.11 1.61 

> system.time(
+     r2<-tapply(dt$y,dt$x,sum)
+ )
 用户  系统  流逝 
13.30  3.58 16.90 
 
# 2G数据
> object.size(dt)
2080002688 bytes

对于2G左右的数据来说,tapply总耗时到了16秒,而data.table为1.6秒,从2个的测试来说,大于400mb数据时CPU耗时是线性的。

把上几组测试数据放到一起,下图所示。

data-table

通过上面的对比,我们发现data.table包比tapply快10倍,比data.frame赋值操作快30倍,比data.frame的索引查询快100倍,绝对是值得花精力去学习的一个包。

赶紧用data.table包去优化你的程序吧!

转载请注明出处:
http://blog.fens.me/r-data-table/

打赏作者

掌握R语言中的apply函数族

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-apply/

apply-title

前言

刚开始接触R语言时,会听到各种的R语言使用技巧,其中最重要的一条就是不要用循环,效率特别低,要用向量计算代替循环计算。

那么,这是为什么呢?原因在于R的循环操作for和while,都是基于R语言本身来实现的,而向量操作是基于底层的C语言函数实现的,从性能上来看,就会有比较明显的差距了。那么如何使用C的函数来实现向量计算呢,就是要用到apply的家族函数,包括apply, sapply, tapply, mapply, lapply, rapply, vapply, eapply等。

目录

  1. apply的家族函数
  2. apply函数
  3. lapply函数
  4. sapply函数
  5. vapply函数
  6. mapply函数
  7. tapply函数
  8. rapply函数
  9. eapply函数

1. apply的家族函数

apply函数族是R语言中数据处理的一组核心函数,通过使用apply函数,我们可以实现对数据的循环、分组、过滤、类型控制等操作。但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是使用者玩不转一类核心函数。

很多R语言新手,写了很多的for循环代码,也不愿意多花点时间把apply函数的使用方法了解清楚,最后把R代码写的跟C似得,我严重鄙视只会写for的R程序员。

apply函数本身就是解决数据循环处理的问题,为了面向不同的数据类型,不同的返回值,apply函数组成了一个函数族,包括了8个功能类似的函数。这其中有些函数很相似,有些也不是太一样的。

apply

我一般最常用的函数为apply和sapply,下面将分别介绍这8个函数的定义和使用方法。

2. apply函数

apply函数是最常用的代替for循环的函数。apply函数可以对矩阵、数据框、数组(二维、多维),按行或列进行循环计算,对子元素进行迭代,并把子元素以参数传递的形式给自定义的FUN函数中,并以返回计算结果。

函数定义:

apply(X, MARGIN, FUN, ...)

参数列表:

  • X:数组、矩阵、数据框
  • MARGIN: 按行计算或按按列计算,1表示按行,2表示按列
  • FUN: 自定义的调用函数
  • …: 更多参数,可选

比如,对一个矩阵的每一行求和,下面就要用到apply做循环了。


> x<-matrix(1:12,ncol=3)
> apply(x,1,sum)
[1] 15 18 21 24

下面计算一个稍微复杂点的例子,按行循环,让数据框的x1列加1,并计算出x1,x2列的均值。


# 生成data.frame
> x <- cbind(x1 = 3, x2 = c(4:1, 2:5)); x
     x1 x2
[1,]  3  4
[2,]  3  3
[3,]  3  2
[4,]  3  1
[5,]  3  2
[6,]  3  3
[7,]  3  4
[8,]  3  5

# 自定义函数myFUN,第一个参数x为数据
# 第二、三个参数为自定义参数,可以通过apply的'...'进行传入。
> myFUN<- function(x, c1, c2) {
+   c(sum(x[c1],1), mean(x[c2])) 
+ }

# 把数据框按行做循环,每行分别传递给myFUN函数,设置c1,c2对应myFUN的第二、三个参数
> apply(x,1,myFUN,c1='x1',c2=c('x1','x2'))
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]  4.0    4  4.0    4  4.0    4  4.0    4
[2,]  3.5    3  2.5    2  2.5    3  3.5    4

通过这个上面的自定义函数myFUN就实现了,一个常用的循环计算。

如果直接用for循环来实现,那么代码如下:


# 定义一个结果的数据框
> df<-data.frame()

# 定义for循环
> for(i in 1:nrow(x)){
+   row<-x[i,]                                         # 每行的值
+   df<-rbind(df,rbind(c(sum(row[1],1), mean(row))))   # 计算,并赋值到结果数据框
+ }

# 打印结果数据框
> df
  V1  V2
1  4 3.5
2  4 3.0
3  4 2.5
4  4 2.0
5  4 2.5
6  4 3.0
7  4 3.5
8  4 4.0

通过for循环的方式,也可以很容易的实现上面计算过程,但是这里还有一些额外的操作需要自己处理,比如构建循环体、定义结果数据集、并合每次循环的结果到结果数据集。

对于上面的需求,还有第三种实现方法,那就是完成利用了R的特性,通过向量化计算来完成的。


> data.frame(x1=x[,1]+1,x2=rowMeans(x))
  x1  x2
1  4 3.5
2  4 3.0
3  4 2.5
4  4 2.0
5  4 2.5
6  4 3.0
7  4 3.5
8  4 4.0

那么,一行就可以完成整个计算过程了。

接下来,我们需要再比较一下3种操作上面性能上的消耗。


# 清空环境变量
> rm(list=ls())

# 封装fun1
> fun1<-function(x){
+   myFUN<- function(x, c1, c2) {
+     c(sum(x[c1],1), mean(x[c2])) 
+   }
+   apply(x,1,myFUN,c1='x1',c2=c('x1','x2'))
+ }

# 封装fun2
> fun2<-function(x){
+   df<-data.frame()
+   for(i in 1:nrow(x)){
+     row<-x[i,]
+     df<-rbind(df,rbind(c(sum(row[1],1), mean(row))))
+   }
+ }

# 封装fun3
> fun3<-function(x){
+   data.frame(x1=x[,1]+1,x2=rowMeans(x))
+ }

# 生成数据集
> x <- cbind(x1=3, x2 = c(400:1, 2:500))

# 分别统计3种方法的CPU耗时。
> system.time(fun1(x))
用户 系统 流逝 
0.01 0.00 0.02 

> system.time(fun2(x))
用户 系统 流逝 
0.19 0.00 0.18 

> system.time(fun3(x))
用户 系统 流逝 
   0    0    0 

从CPU的耗时来看,用for循环实现的计算是耗时最长的,apply实现的循环耗时很短,而直接使用R语言内置的向量计算的操作几乎不耗时。通过上面的测试,对同一个计算来说,优先考虑R语言内置的向量计算,必须要用到循环时则使用apply函数,应该尽量避免显示的使用for,while等操作方法。

3. lapply函数

lapply函数是一个最基础循环操作函数之一,用来对list、data.frame数据集进行循环,并返回和X长度同样的list结构作为结果集,通过lapply的开头的第一个字母’l’就可以判断返回结果集的类型。

函数定义:

lapply(X, FUN, ...)

参数列表:

  • X:list、data.frame数据
  • FUN: 自定义的调用函数
  • …: 更多参数,可选

比如,计算list中的每个KEY对应该的数据的分位数。


# 构建一个list数据集x,分别包括a,b,c 三个KEY值。
> x <- list(a = 1:10, b = rnorm(6,10,5), c = c(TRUE,FALSE,FALSE,TRUE));x
$a
 [1]  1  2  3  4  5  6  7  8  9 10
$b
[1]  0.7585424 14.3662366 13.3772979 11.6658990  9.7011387 21.5321427
$c
[1]  TRUE FALSE FALSE  TRUE

# 分别计算每个KEY对应该的数据的分位数。
> lapply(x,fivenum)
$a
[1]  1.0  3.0  5.5  8.0 10.0

$b
[1]  0.7585424  9.7011387 12.5215985 14.3662366 21.5321427

$c
[1] 0.0 0.0 0.5 1.0 1.0

lapply就可以很方便地把list数据集进行循环操作了,还可以用data.frame数据集按列进行循环,但如果传入的数据集是一个向量或矩阵对象,那么直接使用lapply就不能达到想要的效果了。

比如,对矩阵的列求和。


# 生成一个矩阵
> x <- cbind(x1=3, x2=c(2:1,4:5))
> x; class(x)
     x1 x2
[1,]  3  2
[2,]  3  1
[3,]  3  4
[4,]  3  5
[1] "matrix"

# 求和
> lapply(x, sum)
[[1]]
[1] 3

[[2]]
[1] 3

[[3]]
[1] 3

[[4]]
[1] 3

[[5]]
[1] 2

[[6]]
[1] 1

[[7]]
[1] 4

[[8]]
[1] 5

lapply会分别循环矩阵中的每个值,而不是按行或按列进行分组计算。

如果对数据框的列求和。


> lapply(data.frame(x), sum)
$x1
[1] 12

$x2
[1] 12

lapply会自动把数据框按列进行分组,再进行计算。

4. sapply函数

sapply函数是一个简化版的lapply,sapply增加了2个参数simplify和USE.NAMES,主要就是让输出看起来更友好,返回值为向量,而不是list对象。

函数定义:

sapply(X, FUN, ..., simplify=TRUE, USE.NAMES = TRUE)

参数列表:

  • X:数组、矩阵、数据框
  • FUN: 自定义的调用函数
  • …: 更多参数,可选
  • simplify: 是否数组化,当值array时,输出结果按数组进行分组
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

我们还用上面lapply的计算需求进行说明。


> x <- cbind(x1=3, x2=c(2:1,4:5))

# 对矩阵计算,计算过程同lapply函数
> sapply(x, sum)
[1] 3 3 3 3 2 1 4 5

# 对数据框计算
> sapply(data.frame(x), sum)
x1 x2 
12 12 

# 检查结果类型,sapply返回类型为向量,而lapply的返回类型为list
> class(lapply(x, sum))
[1] "list"
> class(sapply(x, sum))
[1] "numeric"

如果simplify=FALSE和USE.NAMES=FALSE,那么完全sapply函数就等于lapply函数了。


> lapply(data.frame(x), sum)
$x1
[1] 12

$x2
[1] 12

> sapply(data.frame(x), sum, simplify=FALSE, USE.NAMES=FALSE)
$x1
[1] 12

$x2
[1] 12

对于simplify为array时,我们可以参考下面的例子,构建一个三维数组,其中二个维度为方阵。


> a<-1:2

# 按数组分组
> sapply(a,function(x) matrix(x,2,2), simplify='array')
, , 1

     [,1] [,2]
[1,]    1    1
[2,]    1    1

, , 2

     [,1] [,2]
[1,]    2    2
[2,]    2    2

# 默认情况,则自动合并分组
> sapply(a,function(x) matrix(x,2,2))
     [,1] [,2]
[1,]    1    2
[2,]    1    2
[3,]    1    2
[4,]    1    2

对于字符串的向量,还可以自动生成数据名。


> val<-head(letters)

# 默认设置数据名
> sapply(val,paste,USE.NAMES=TRUE)
  a   b   c   d   e   f 
"a" "b" "c" "d" "e" "f" 

# USE.NAMES=FALSE,则不设置数据名
> sapply(val,paste,USE.NAMES=FALSE)
[1] "a" "b" "c" "d" "e" "f"

5. vapply函数

vapply类似于sapply,提供了FUN.VALUE参数,用来控制返回值的行名,这样可以让程序更健壮。

函数定义:

vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

参数列表:

  • X:数组、矩阵、数据框
  • FUN: 自定义的调用函数
  • FUN.VALUE: 定义返回值的行名row.names
  • …: 更多参数,可选
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

比如,对数据框的数据进行累计求和,并对每一行设置行名row.names


# 生成数据集
> x <- data.frame(cbind(x1=3, x2=c(2:1,4:5)))

# 设置行名,4行分别为a,b,c,d
> vapply(x,cumsum,FUN.VALUE=c('a'=0,'b'=0,'c'=0,'d'=0))
  x1 x2
a  3  2
b  6  3
c  9  7
d 12 12

# 当不设置时,为默认的索引值
> a<-sapply(x,cumsum);a
     x1 x2
[1,]  3  2
[2,]  6  3
[3,]  9  7
[4,] 12 12

# 手动的方式设置行名
> row.names(a)<-c('a','b','c','d')
> a
  x1 x2
a  3  2
b  6  3
c  9  7
d 12 12

通过使用vapply可以直接设置返回值的行名,这样子做其实可以节省一行的代码,让代码看起来更顺畅,当然如果不愿意多记一个函数,那么也可以直接忽略它,只用sapply就够了。

6. mapply函数

mapply也是sapply的变形函数,类似多变量的sapply,但是参数定义有些变化。第一参数为自定义的FUN函数,第二个参数’…’可以接收多个数据,作为FUN函数的参数调用。

函数定义:

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,USE.NAMES = TRUE)

参数列表:

  • FUN: 自定义的调用函数
  • …: 接收多个数据
  • MoreArgs: 参数列表
  • SIMPLIFY: 是否数组化,当值array时,输出结果按数组进行分组
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

比如,比较3个向量大小,按索引顺序取较大的值。


> set.seed(1)

# 定义3个向量
> x<-1:10
> y<-5:-4
> z<-round(runif(10,-5,5))

# 按索引顺序取较大的值。
> mapply(max,x,y,z)
 [1]  5  4  3  4  5  6  7  8  9 10

再看一个例子,生成4个符合正态分布的数据集,分别对应的均值和方差为c(1,10,100,1000)。


> set.seed(1)

# 长度为4
> n<-rep(4,4)

# m为均值,v为方差
> m<-v<-c(1,10,100,1000)

# 生成4组数据,按列分组
> mapply(rnorm,n,m,v)
          [,1]      [,2]      [,3]       [,4]
[1,] 0.3735462 13.295078 157.57814   378.7594
[2,] 1.1836433  1.795316  69.46116 -1214.6999
[3,] 0.1643714 14.874291 251.17812  2124.9309
[4,] 2.5952808 17.383247 138.98432   955.0664

由于mapply是可以接收多个参数的,所以我们在做数据操作的时候,就不需要把数据先合并为data.frame了,直接一次操作就能计算出结果了。

7. tapply函数

tapply用于分组的循环计算,通过INDEX参数可以把数据集X进行分组,相当于group by的操作。

函数定义:

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

参数列表:

  • X: 向量
  • INDEX: 用于分组的索引
  • FUN: 自定义的调用函数
  • …: 接收多个数据
  • simplify : 是否数组化,当值array时,输出结果按数组进行分组

比如,计算不同品种的鸢尾花的花瓣(iris)长度的均值。


# 通过iris$Species品种进行分组
> tapply(iris$Petal.Length,iris$Species,mean)
    setosa versicolor  virginica 
     1.462      4.260      5.552 

对向量x和y进行计算,并以向量t为索引进行分组,求和。


> set.seed(1)

# 定义x,y向量
> x<-y<-1:10;x;y
 [1]  1  2  3  4  5  6  7  8  9 10
 [1]  1  2  3  4  5  6  7  8  9 10

# 设置分组索引t
> t<-round(runif(10,1,100)%%2);t
 [1] 1 2 2 1 1 2 1 0 1 1

# 对x进行分组求和
> tapply(x,t,sum)
 0  1  2 
 8 36 11 

由于tapply只接收一个向量参考,通过’…’可以把再传给你FUN其他的参数,那么我们想去y向量也进行求和,把y作为tapply的第4个参数进行计算。


> tapply(x,t,sum,y)
 0  1  2 
63 91 66 

得到的结果并不符合我们的预期,结果不是把x和y对应的t分组后求和,而是得到了其他的结果。第4个参数y传入sum时,并不是按照循环一个一个传进去的,而是每次传了完整的向量数据,那么再执行sum时sum(y)=55,所以对于t=0时,x=8 再加上y=55,最后计算结果为63。那么,我们在使用’…’去传入其他的参数的时候,一定要看清楚传递过程的描述,才不会出现的算法上的错误。

8. rapply函数

rapply是一个递归版本的lapply,它只处理list类型数据,对list的每个元素进行递归遍历,如果list包括子元素则继续遍历。

函数定义:

rapply(object, f, classes = "ANY", deflt = NULL, how = c("unlist", "replace", "list"), ...)

参数列表:

  • object:list数据
  • f: 自定义的调用函数
  • classes : 匹配类型, ANY为所有类型
  • deflt: 非匹配类型的默认值
  • how: 3种操作方式,当为replace时,则用调用f后的结果替换原list中原来的元素;当为list时,新建一个list,类型匹配调用f函数,不匹配赋值为deflt;当为unlist时,会执行一次unlist(recursive = TRUE)的操作
  • …: 更多参数,可选

比如,对一个list的数据进行过滤,把所有数字型numeric的数据进行从小到大的排序。


> x=list(a=12,b=1:4,c=c('b','a'))
> y=pi
> z=data.frame(a=rnorm(10),b=1:10)
> a <- list(x=x,y=y,z=z)

# 进行排序,并替换原list的值
> rapply(a,sort, classes='numeric',how='replace')
$x
$x$a
[1] 12
$x$b
[1] 4 3 2 1
$x$c
[1] "b" "a"

$y
[1] 3.141593

$z
$z$a
 [1] -0.8356286 -0.8204684 -0.6264538 -0.3053884  0.1836433  0.3295078
 [7]  0.4874291  0.5757814  0.7383247  1.5952808
$z$b
 [1] 10  9  8  7  6  5  4  3  2  1

> class(a$z$b)
[1] "integer"

从结果发现,只有$z$a的数据进行了排序,检查$z$b的类型,发现是integer,是不等于numeric的,所以没有进行排序。

接下来,对字符串类型的数据进行操作,把所有的字符串型加一个字符串’++++’,非字符串类型数据设置为NA。


> rapply(a,function(x) paste(x,'++++'),classes="character",deflt=NA, how = "list")
$x
$x$a
[1] NA
$x$b
[1] NA
$x$c
[1] "b ++++" "a ++++"

$y
[1] NA

$z
$z$a
[1] NA
$z$b
[1] NA

只有$x$c为字符串向量,都合并了一个新字符串。那么,有了rapply就可以对list类型的数据进行方便的数据过滤了。

9. eapply函数

对一个环境空间中的所有变量进行遍历。如果我们有好的习惯,把自定义的变量都按一定的规则存储到自定义的环境空间中,那么这个函数将会让你的操作变得非常方便。当然,可能很多人都不熟悉空间的操作,那么请参考文章 揭开R语言中环境空间的神秘面纱解密R语言函数的环境空间

函数定义:

eapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE)

参数列表:

  • env: 环境空间
  • FUN: 自定义的调用函数
  • …: 更多参数,可选
  • all.names: 匹配类型, ANY为所有类型
  • USE.NAMES: 如果X为字符串,TRUE设置字符串为数据名,FALSE不设置

下面我们定义一个环境空间,然后对环境空间的变量进行循环处理。


# 定义一个环境空间
> env


# 向这个环境空间中存入3个变量
> env$a <- 1:10
> env$beta <- exp(-3:3)
> env$logic <- c(TRUE, FALSE, FALSE, TRUE)
> env


# 查看env空间中的变量
> ls(env)
[1] "a"     "beta"  "logic"

# 查看env空间中的变量字符串结构
> ls.str(env)
a :  int [1:10] 1 2 3 4 5 6 7 8 9 10
beta :  num [1:7] 0.0498 0.1353 0.3679 1 2.7183 ...
logic :  logi [1:4] TRUE FALSE FALSE TRUE

计算env环境空间中所有变量的均值。


> eapply(env, mean)
$logic
[1] 0.5
$beta
[1] 4.535125
$a
[1] 5.5

再计算中当前环境空间中的所有变量的占用内存大小。


# 查看当前环境空间中的变量
> ls()
 [1] "a"     "df"     "env"    "x"     "y"    "z"    "X"  

# 查看所有变量的占用内存大小
> eapply(environment(), object.size)
$a
2056 bytes

$df
1576 bytes

$x
656 bytes

$y
48 bytes

$z
952 bytes

$X
1088 bytes

$env
56 bytes

eapply函数平时很难被用到,但对于R包开发来说,环境空间的使用是必须要掌握的。特别是当R要做为工业化的工具时,对变量的精确控制和管理是非常必要的。

本文全面地介绍了,R语言中的数据循环处理的apply函数族,基本已经可以应对所有的循环处理的情况了。同时,在apply一节中也比较了,3种数据处理方面的性能,R的内置向量计算,要优于apply循环,大幅优于for循环。那么我们在以后的R的开发和使用过程中,应该更多地把apply函数使用好。

忘掉程序员的思维,换成数据的思维,也许你就一下子开朗了。

转载请注明出处:
http://blog.fens.me/r-apply/

打赏作者