• Posts tagged "book"

Blog Archives

读书笔记 Big Data Analytics with R and Hadoop

RHadoop实践系列文章,包含了R语言与Hadoop结合进行海量数据分析。Hadoop主要用来存储海量数据,R语言完成MapReduce 算法,用来替代Java的MapReduce实现。有了RHadoop可以让广大的R语言爱好者,有更强大的工具处理大数据1G, 10G, 100G, TB, PB。 由于大数据所带来的单机性能问题,可能会一去不复返了。

RHadoop实践是一套系列文章,主要包括”Hadoop环境搭建”,”RHadoop安装与使用”,R实现MapReduce的协同过滤算法”,”HBase和rhbase的安装与使用”。对于单独的R语言爱好者,Java爱好者,或者Hadoop爱好者来说,同时具备三种语言知识并不容 易。此文虽为入门文章,但R,Java,Hadoop基础知识还是需要大家提前掌握。

关于作者

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-hadoop-book-big-data/

r-hadoop-book-big-data

前言

最近的一本新书Big Data Analytics with R and Hadoop是关于R和Hadoop实践的第一本图书,作者Vignesh Prajapati曾经在图书出版的半年前联系过我,通过Google翻译发现了我的博客,希望把其中的1-2个例子放到他的书中。

没想到这本书,经过半年就出版了,作者效率还是挺高的。受Packt Publishing编辑Amol Bhosle委托为本书写个书评,于是就有本篇文章。

目录

  1. 图书概览
  2. 图书内容剖析
  3. 最后总结

1. 图书概览

本书的几个核心点:R,Hadoop, R+Hadoop, 数据分析案例,机器学习算法案例,R的数据访问接口。

我通过一个思维导图来表达。

Big Data Analytics with R and Hadoop - fens.me

书中最重要的是案例部分,作者分别使用R语言单机实现,以及RHadoop的分步式实现,介绍是多个案例的实践。

2. 图书内容剖析

  • R语言介绍
  • Hadoop介绍
  • R+Hadoop技术方案
  • 数据分析案例
  • 大数据分析案例
  • R语言的数据访问接口

1). R语言介绍

简单地介绍了R安装,RStudio安装,R语言最擅长算法模型:回归,分类,聚类,推荐。

2). Hadoop介绍

主要是介绍了Hadoop安装,在几种不同的Linux系统上,用Apache Hadoop和Cloudera Hadoop二个版本对比安装。

简单介绍了HDFS,dateeode和namenode;讲了MapReduce的工作原理,和用MapReduce对数据处理的过程。

介绍了Hadoop的命令行的使用。

3). R+Hadoop技术方案

作者对于R+Hadoop做了3种技术方案讨论,分别是RHipe, RHadoop, R + Hadoop Streaming。

a. RHipe

RHipe是R与Hadoop的集成编程环境。RHIPE可以让R语言与Hadoop进行通信,访问Hadoop的HDFS和调用MapReduce,让R语言的使用者利用Hadoop的分步式环境进行行大数据的分析。

RHipe官方网站:http://www.datadr.org/

b. RHadoop

RHadoop是由RevolutionAnalytics公司开发的一个R与Hadoop的集成编程环境,与RHipe的功能一样。RHadoop包含三个R包 (rmr,rhdfs,rhbase),分别是对应Hadoop系统架构中的,MapReduce, HDFS, HBase 三个部分。在2013年底,又增加第4个R包plyrmr,用于数据处理操作。本书中并没有涉及plyrmr包。

RHadoop的发布页:https://github.com/RevolutionAnalytics/RHadoop/wiki

RHadoop实践系列文章:http://blog.fens.me/series-rhadoop/

c. R + Hadoop Streaming

Hadoop Streaming是Hadoop提供的,允许任何可执行的脚本作为Mapper和Reducer的一种实现方实。R + Hadoop Streaming就是用R脚本实现Mapper和Reducer。作者用2种方式,进行了测试。

c1. R Script + Hadoop Streaming : 单纯的R语言脚本,通过Shell运行。
c2. HadoopStreaming + Hadoop Streaming: 使用一个封装好的R包HadoopStreaming来实现。

这3种技术方案,是目前R与Hadoop结合实现方案。我对RHadoop和R Script + Hadoop Streaming比较熟悉,经过我测试只有R Script + Hadoop Streaming这种方式,可以用于生产环境,RHadoop性能还是有一些问题的,可以提升的空间还是很大的。书中介绍的另外两种方法,我要有时间,再去试试。不过,我相信R和Hadoop的结合的项目,会越来越多的。

4). 数据分析案例

上面篇幅把技术的基础都说清楚,接下来就是核心案例了,书中介绍了如何使用R结合Hadoop进行数据分析。

首先书中介绍了,一个数据分析项目的框架,包括5个部分。

  • 问题
  • 定义数据需求
  • 数据预处理
  • 数据建模及执行
  • 数据可视化

然后,作者介绍了3个应用案例。

  • 网页分类:把一个网站中的网页按重要性进行排名
  • 股票分析:通过历史交易数据计算股票市场的变化
  • 价格预测:预测图书销售的价格,来自Kaggle的一道竞赛题

上面3个案例,都使用R和RHadoop进行实现,都是非常不错的案例,可以给我们的学习和使用提供很好的思路。

5). 机器学习算法案例

接下来,作者介绍了用RHadoop实现的基于大数据机器学习算法,充分结合了R和Hadoop的优势。作者把机器学习算法分为3类,监督学习算法,非监督学习算法,推荐算法。

4个算法的案例:

a. 线性回归

最简单的一种回归算法,可以下面公式表示。

y = ax + e 

在R语言中,一个函数lm()就可以实现。

在大数据的背景下,利用RHadoop,需要自己实现lm()这个函数。


# Reducer
Sum = function(., YY) keyval(1, list(Reduce('+', YY)))

# XtX =
values(

# For loading hdfs data in to R
from.dfs(

# MapReduce Job to produce XT*X
mapreduce(
input = X.index,

# Mapper – To calculate and emitting XT*X
map =
function(., Xi) {
yi = y[Xi[,1],]
Xi = Xi[,-1]
keyval(1, list(t(Xi) %*% Xi))},

# Reducer – To reduce the Mapper output by performing sum
operation over them
reduce = Sum,
combine = TRUE)))[[1]]

b. Logistic回归

比线性回归稍微复杂一些,可以用公式表示。


logit(p) = β0 + β1 × x1 + β2 × x2 + ... + βn × xn

R程序还是一个函数glm()。

在大数据的背景下,利用RHadoop,需要自己实现glm()这个函数。


# Mapper – computes the contribution of a subset of points to the
gradient.

lr.map =
  function(., M) {
    Y = M[,1]
    X = M[,-1]
    keyval(1, Y * X * g(-Y * as.numeric(X %*% t(plane))))
}

# Reducer – Perform sum operation over Mapper output.

lr.reduce = function(k, Z) keyval(k, t(as.matrix(apply(Z,2,sum))))

# MapReduce job – Defining MapReduce function for executing logistic
regression

logistic.regression =
  function(input, iterations, dims, alpha){
    plane = t(rep(0, dims))
    g = function(z) 1/(1 + exp(-z))
    for (i in 1:iterations) {
      gradient =
        values(
          from.dfs(
            mapreduce(input, map = lr.map, reduce = lr.reduce, combine = T)))
      plane = plane + alpha * gradient 
    }
    plane 
}

c. 聚类算法

这里介绍的是快速聚类kmeans,聚类属于非监督学习法。

通过R语言现实,一个函数kmeans()就可以完成了。

通过RHadoop现实,就需要自己重写这个迭代过程。


# distance calculation function
dist.fun = function(C, P) {
  apply(C,1,function(x) colSums((t(P) - x)^2))
}

# k-Means Mapper
kmeans.map = function(., P) {
  nearest = {

  # First interations- Assign random cluster centers
  if(is.null(C))
    sample(1:num.clusters,nrow(P),replace = T)

# Rest of the iterations, where the clusters are assigned # based
on the minimum distance from points

  else {
    D = dist.fun(C, P)
    nearest = max.col(-D)}}
    if(!(combine || in.memory.combine))
      keyval(nearest, P)
    else
      keyval(nearest, cbind(1, P))
}


# k-Means Reducer
kmeans.reduce = {

  # calculating the column average for both of the conditions
  if (!(combine || in.memory.combine) )
    function(., P) t(as.matrix(apply(P, 2, mean)))
  else function(k, P) keyval(k,t(as.matrix(apply(P, 2, sum))))
}


# k-Means MapReduce – for
kmeans.mr = function(P,num.clusters,num.iter,combine,in.memory.combine) {
  C = NULL
  for(i in 1:num.iter ) {
    C =  values(from.dfs(mapreduce(P,map = kmeans.map,reduce = kmeans.reduce)))
    if(combine || in.memory.combine)
    C = C[, -1]/C[, 1]
    if(nrow(C) < num.clusters) {
      C =rbind(C,matrix(rnorm((num.clusters -nrow(C)) * nrow(C)),ncol = row(C)) %*% C) 
    }
  }
  C
}

d. 推荐算法

这里介绍的是协同过滤算法,算法实现就有点复杂了。主要思想就是:

同现矩阵 * 评分矩阵 = 推荐结果

注:由于这个案例出自我的博客,我就直接贴我的文章地址了,也方便中文读者了解算法细节。

R语言的算法实现:http://blog.fens.me/r-mahout-usercf/

RHadoop分步式算法实现:http://blog.fens.me/rhadoop-mapreduce-rmr/

6). R语言的数据访问接口

最后一部分,书中介绍了R语言的各种数据访问接口。

FILE:

  • CSV: read.csv(), write.csv()
  • Excel: xlsx, xlsxjars,rJava

Database:

  • MySQL: RMySQL
  • SQLite: RSQLite
  • PostgreSQL: RPostgreSQL

NoSQL:

  • MongoDB: rmongodb
  • Hive: RHive
  • HBase: RHBase

补充一下,我的博客中也写了R的数据访问接口的文章。

R的多种接口已经打通,这也就说明R已经做好了准备,为工业界带来革命的力量。

3. 最后总结

这是一本不错的图书,从R+Hadoop的角度出发,打开R语言面向大数据应用的思路。这种结合是跨学科碰撞的结果,是市场需求的导向。但由于R+Hadoop还不够成熟,企业级应用依然缺乏成功案例,所以当实施R+Hadoop的应用时,还会碰到非常多的问题。期待有担当的公司和个人,做出被大家认可的产品来。

转载请注明出处:
http://blog.fens.me/r-hadoop-book-big-data/

打赏作者

Mahout构建图书推荐系统

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mahout-recommend-book/

mahout-recommendation-book

前言

本文是Mahout实现推荐系统的又一案例,用Mahout构建图书推荐系统。与之前的两篇文章,思路上面类似,侧重点在于图书的属性如何利用。本文的数据在自于Amazon网站,由爬虫抓取获得。

目录

  1. 项目背景
  2. 需求分析
  3. 数据说明
  4. 算法模型
  5. 程序开发

1. 项目背景

Amazon是最早的电子商务网站之一,以网上图书起家,最后发展成为音像,电子消费品,游戏,生活用品等的综合性电子商务平台。Amazon的推荐系统,是互联网上最早的商品推荐系统,它为Amazon带来了至少30%的流量,和可观的销售利润。

如今推荐系统已经成为电子商务网站的标配,如果还没有推荐系统都不好意思,说自己是做电商的。

2. 需求分析

推荐系统如此重要,我们应该如果理解?

打开Amazon的Mahout In Action图书页面:
http://www.amazon.com/Mahout-Action-Sean-Owen/dp/1935182684/ref=pd_sim_b_1?ie=UTF8&refRID=0H4H2NSSR8F34R76E2TP

网页上的元素:

  • 广告位:广告商投放广告的位置,网站可以靠网络广告赚钱,一般是网页最好的位置。
  • 平均分:用户对图书的打分
  • 关联规则:通过关联规则,推荐位
  • 协同过滤:通过基于物品的协同过滤算法的,推荐位
  • 图书属性:包括页数,出版社,ISBN,语言等
  • 作者介绍:有关作者的介绍,和作者的其他著作
  • 用户评分:用户评分行为
  • 用户评论:用户评论的内容

amazon-book

在网页上,其他的推荐位:

amazon-book-2

结合上面2张截图,我们不难发现,推荐对于Amazon的重要性。除了最明显的广告位给了能直接带来利润的广告商,网页中有4处推荐位,分别从不同的维度,用不同的推荐算法,猜用户喜欢的商品。

3. 数据说明

2个数据文件:

  • rating.csv :用户评分行为数据
  • users.csv :用户属性数据

1). book-ratings.csv

  • 3列数据:用户ID,图书ID, 用户对图书的评分
  • 记录数: 4000次的图书评分
  • 用户数: 200个
  • 图书数: 1000个
  • 评分:1-10

数据示例


1,565,3
1,807,2
1,201,1
1,557,9
1,987,10
1,59,5
1,305,6
1,153,3
1,139,7
1,875,5
1,722,10
2,977,4
2,806,3
2,654,8
2,21,8
2,662,5
2,437,6
2,576,3
2,141,8
2,311,4
2,101,3
2,540,9
2,87,3
2,65,8
2,501,6
2,710,5
2,331,9
2,542,4
2,757,9
2,590,7

2). users.csv

  • 3列数据:用户ID,用户性别,用户年龄
  • 用户数: 200个
  • 用户性别: M为男性,F为女性
  • 用户年龄: 11-80岁之间

数据示例


1,M,40
2,M,27
3,M,41
4,F,43
5,F,16
6,M,36
7,F,36
8,F,46
9,M,50
10,M,21
11,F,11
12,M,42
13,F,40
14,F,28
15,M,25
16,M,68
17,M,53
18,F,69
19,F,48
20,F,56
21,F,36

4. 算法模型

本文主要介绍Mahout的基于物品的协同过滤模型,其他的算法模型将不再这里解释。

针对上面的数据,我将用7种算法组合进行测试:有关Mahout算法组合的详细解释,请参考文章:从源代码剖析Mahout推荐引擎

7种算法组合

  • userCF1: EuclideanSimilarity+ NearestNUserNeighborhood+ GenericUserBasedRecommender
  • userCF2: LogLikelihoodSimilarity+ NearestNUserNeighborhood+ GenericUserBasedRecommender
  • userCF3: EuclideanSimilarity+ NearestNUserNeighborhood+ GenericBooleanPrefUserBasedRecommender
  • itemCF1: EuclideanSimilarity + GenericItemBasedRecommender
  • itemCF2: LogLikelihoodSimilarity + GenericItemBasedRecommender
  • itemCF3: EuclideanSimilarity + GenericBooleanPrefItemBasedRecommender
  • slopeOne:SlopeOneRecommender

对上面的算法进行算法评估,有关于算法评估的详细解释,请参考文章:Mahout推荐算法API详解

  • 查准率:
  • 召回率(查全率):

5. 程序开发

系统架构:Mahout中推荐过滤算法支持单机算法和分步式算法两种。

  • 单机算法: 在单机内存计算,支持多种算法推荐算法,部署运行简单,修正处理数据量有限
  • 分步式算法: 基于Hadoop集群运行,支持有限的几种推荐算法,部署运行复杂,支持海量数据

mahout-recommend-job-architect

开发环境

  • Win7 64bit
  • Java 1.6.0_45
  • Maven3
  • Eclipse Juno Service Release 2
  • Mahout-0.8
  • Hadoop-1.1.2

开发环境mahout版本为0.8。 请参考文章:用Maven构建Mahout项目

新建Java类:

  • BookEvaluator.java, 选出“评估推荐器”验证得分较高的算法
  • BookResult.java, 对指定数量的结果人工比较
  • BookFilterGenderResult.java,只保留男性用户的图书列表

1). BookEvaluator.java, 选出“评估推荐器”验证得分较高的算法

源代码


package org.conan.mymahout.recommendation.book;

import java.io.IOException;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class BookEvaluator {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws TasteException, IOException {
        String file = "datafile/book/rating.csv";
        DataModel dataModel = RecommendFactory.buildDataModel(file);
        userEuclidean(dataModel);
        userLoglikelihood(dataModel);
        userEuclideanNoPref(dataModel);
        itemEuclidean(dataModel);
        itemLoglikelihood(dataModel);
        itemEuclideanNoPref(dataModel);
        slopeOne(dataModel);
    }

    public static RecommenderBuilder userEuclidean(DataModel dataModel) throws TasteException, IOException {
        System.out.println("userEuclidean");
        UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
        UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
        RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, true);

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }
    
    public static RecommenderBuilder userLoglikelihood(DataModel dataModel) throws TasteException, IOException {
        System.out.println("userLoglikelihood");
        UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
        UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
        RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, true);

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }
    
    public static RecommenderBuilder userEuclideanNoPref(DataModel dataModel) throws TasteException, IOException {
        System.out.println("userEuclideanNoPref");
        UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
        UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
        RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }

    public static RecommenderBuilder itemEuclidean(DataModel dataModel) throws TasteException, IOException {
        System.out.println("itemEuclidean");
        ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
        RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, true);

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }

    public static RecommenderBuilder itemLoglikelihood(DataModel dataModel) throws TasteException, IOException {
        System.out.println("itemLoglikelihood");
        ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
        RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, true);

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }
    
    public static RecommenderBuilder itemEuclideanNoPref(DataModel dataModel) throws TasteException, IOException {
        System.out.println("itemEuclideanNoPref");
        ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
        RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, false);

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }

    public static RecommenderBuilder slopeOne(DataModel dataModel) throws TasteException, IOException {
        System.out.println("slopeOne");
        RecommenderBuilder recommenderBuilder = RecommendFactory.slopeOneRecommender();

        RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
        RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
        return recommenderBuilder;
    }
}

控制台输出:


userEuclidean
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:0.33333325386047363
Recommender IR Evaluator: [Precision:0.3010752688172043,Recall:0.08542713567839195]
userLoglikelihood
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:2.5245869159698486
Recommender IR Evaluator: [Precision:0.11764705882352945,Recall:0.017587939698492466]
userEuclideanNoPref
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:4.288461538461536
Recommender IR Evaluator: [Precision:0.09045226130653267,Recall:0.09296482412060306]
itemEuclidean
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:1.408880928305655
Recommender IR Evaluator: [Precision:0.0,Recall:0.0]
itemLoglikelihood
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:2.448554412835434
Recommender IR Evaluator: [Precision:0.0,Recall:0.0]
itemEuclideanNoPref
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:2.5665197873957957
Recommender IR Evaluator: [Precision:0.6005025125628134,Recall:0.6055276381909548]
slopeOne
AVERAGE_ABSOLUTE_DIFFERENCE Evaluater Score:2.6893078179405814
Recommender IR Evaluator: [Precision:0.0,Recall:0.0]

可视化“评估推荐器”输出:

推荐的结果的平均距离

difference

推荐器的评分

evaluator

只有itemEuclideanNoPref算法评估的结果是非常好的,其他算法的结果都不太好。

2). BookResult.java, 对指定数量的结果人工比较

为得到差异化结果,我们分别取4个算法:userEuclidean,itemEuclidean,userEuclideanNoPref,itemEuclideanNoPref,对推荐结果人工比较。

源代码


package org.conan.mymahout.recommendation.book;

import java.io.IOException;
import java.util.List;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;

public class BookResult {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws TasteException, IOException {
        String file = "datafile/book/rating.csv";
        DataModel dataModel = RecommendFactory.buildDataModel(file);
        RecommenderBuilder rb1 = BookEvaluator.userEuclidean(dataModel);
        RecommenderBuilder rb2 = BookEvaluator.itemEuclidean(dataModel);
        RecommenderBuilder rb3 = BookEvaluator.userEuclideanNoPref(dataModel);
        RecommenderBuilder rb4 = BookEvaluator.itemEuclideanNoPref(dataModel);
        
        LongPrimitiveIterator iter = dataModel.getUserIDs();
        while (iter.hasNext()) {
            long uid = iter.nextLong();
            System.out.print("userEuclidean       =>");
            result(uid, rb1, dataModel);
            System.out.print("itemEuclidean       =>");
            result(uid, rb2, dataModel);
            System.out.print("userEuclideanNoPref =>");
            result(uid, rb3, dataModel);
            System.out.print("itemEuclideanNoPref =>");
            result(uid, rb4, dataModel);
        }
    }

    public static void result(long uid, RecommenderBuilder recommenderBuilder, DataModel dataModel) throws TasteException {
        List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, false);
    }
}

控制台输出:只截取部分结果


...
userEuclidean       =>uid:63,
itemEuclidean       =>uid:63,(984,9.000000)(690,9.000000)(943,8.875000)
userEuclideanNoPref =>uid:63,(4,1.000000)(723,1.000000)(300,1.000000)
itemEuclideanNoPref =>uid:63,(867,3.791667)(947,3.083333)(28,2.750000)
userEuclidean       =>uid:64,
itemEuclidean       =>uid:64,(368,8.615385)(714,8.200000)(290,8.142858)
userEuclideanNoPref =>uid:64,(860,1.000000)(490,1.000000)(64,1.000000)
itemEuclideanNoPref =>uid:64,(409,3.950000)(715,3.830627)(901,3.444048)
userEuclidean       =>uid:65,(939,7.000000)
itemEuclidean       =>uid:65,(550,9.000000)(334,9.000000)(469,9.000000)
userEuclideanNoPref =>uid:65,(939,2.000000)(185,1.000000)(736,1.000000)
itemEuclideanNoPref =>uid:65,(666,4.166667)(96,3.093931)(345,2.958333)
userEuclidean       =>uid:66,
itemEuclidean       =>uid:66,(971,9.900000)(656,9.600000)(918,9.577709)
userEuclideanNoPref =>uid:66,(6,1.000000)(492,1.000000)(676,1.000000)
itemEuclideanNoPref =>uid:66,(185,3.650000)(533,3.617307)(172,3.500000)
userEuclidean       =>uid:67,
itemEuclidean       =>uid:67,(663,9.700000)(987,9.625000)(486,9.600000)
userEuclideanNoPref =>uid:67,(732,1.000000)(828,1.000000)(113,1.000000)
itemEuclideanNoPref =>uid:67,(724,3.000000)(279,2.950000)(890,2.750000)
...

我们查看uid=65的用户推荐信息:

查看user.csv数据集


> user[65,]
userid gender age
65     65      M  14

用户65,男性,14岁。

以itemEuclideanNoPref的算法的推荐结果,查看bookid=666的图书评分情况


> rating[which(rating$bookid==666),]
userid bookid pref
646      44    666   10
1327     89    666    7
2470    165    666    3
2697    179    666    7

发现有4个用户对666的图书评分,查看这4个用户的属性数据


> user[c(44,89,165,179),]
userid gender age
44      44      F  76
89      89      M  40
165    165      F  59
179    179      F  68

这4个用户,3女1男。

我们假设男性和男性有相同的图书兴趣,女性和女性有相同的图书偏好。因为用户65是男性,所以我们接下来排除女性的评分者,只保留男性评分者的评分记录。

3). BookFilterGenderResult.java,只保留男性用户的图书列表

源代码


package org.conan.mymahout.recommendation.book;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.IDRescorer;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;

public class BookFilterGenderResult {

    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 3;

    public static void main(String[] args) throws TasteException, IOException {
        String file = "datafile/book/rating.csv";
        DataModel dataModel = RecommendFactory.buildDataModel(file);
        RecommenderBuilder rb1 = BookEvaluator.userEuclidean(dataModel);
        RecommenderBuilder rb2 = BookEvaluator.itemEuclidean(dataModel);
        RecommenderBuilder rb3 = BookEvaluator.userEuclideanNoPref(dataModel);
        RecommenderBuilder rb4 = BookEvaluator.itemEuclideanNoPref(dataModel);
        
        long uid = 65;
        System.out.print("userEuclidean       =>");
        filterGender(uid, rb1, dataModel);
        System.out.print("itemEuclidean       =>");
        filterGender(uid, rb2, dataModel);
        System.out.print("userEuclideanNoPref =>");
        filterGender(uid, rb3, dataModel);
        System.out.print("itemEuclideanNoPref =>");
        filterGender(uid, rb4, dataModel);
    }

    /**
     * 对用户性别进行过滤
     */
    public static void filterGender(long uid, RecommenderBuilder recommenderBuilder, DataModel dataModel) throws TasteException, IOException {
        Set userids = getMale("datafile/book/user.csv");

        //计算男性用户打分过的图书
        Set bookids = new HashSet();
        for (long uids : userids) {
            LongPrimitiveIterator iter = dataModel.getItemIDsFromUser(uids).iterator();
            while (iter.hasNext()) {
                long bookid = iter.next();
                bookids.add(bookid);
            }
        }

        IDRescorer rescorer = new FilterRescorer(bookids);
        List list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM, rescorer);
        RecommendFactory.showItems(uid, list, false);
    }

    /**
     * 获得男性用户ID
     */
    public static Set getMale(String file) throws IOException {
        BufferedReader br = new BufferedReader(new FileReader(new File(file)));
        Set userids = new HashSet();
        String s = null;
        while ((s = br.readLine()) != null) {
            String[] cols = s.split(",");
            if (cols[1].equals("M")) {// 判断男性用户
                userids.add(Long.parseLong(cols[0]));
            }
        }
        br.close();
        return userids;
    }

}

/**
 * 对结果重计算
 */
class FilterRescorer implements IDRescorer {
    final private Set userids;

    public FilterRescorer(Set userids) {
        this.userids = userids;
    }

    @Override
    public double rescore(long id, double originalScore) {
        return isFiltered(id) ? Double.NaN : originalScore;
    }

    @Override
    public boolean isFiltered(long id) {
        return userids.contains(id);
    }
}

控制台输出:


userEuclidean       =>uid:65,
itemEuclidean       =>uid:65,(784,8.090909)(276,8.000000)(476,7.666667)
userEuclideanNoPref =>uid:65,
itemEuclideanNoPref =>uid:65,(887,2.250000)(356,2.166667)(430,1.866667)

我们发现,由于只保留男性的评分记录,数据量就变得比较少了,基于用户的协同过滤算法,已经没有输出的结果了。基于物品的协同过滤算法,结果集也有所变化。

对于itemEuclideanNoPref算法,输出排名第一条为ID为887的图书。

我再进一步向下追踪:查询哪些用户对图书887进行了打分。


> rating[which(rating$bookid==887),]
userid bookid pref
1280     85    887    2
1743    119    887    8
2757    184    887    4
2791    186    887    5

有4个用户对图书887评分,再分别查看这个用户的属性


> user[c(85,119,184,186),]
userid gender age
85      85      F  31
119    119      F  49
184    184      M  27
186    186      M  35

其中2男,2女。由于我们的算法,已经排除了女性的评分,我们可以推断图书887的推荐应该来自于2个男性的评分者的推荐。

分别计算用户65,与用户184和用户186的评分的图书交集。


rat65<-rating[which(rating$userid==65),]
rat184<-rating[which(rating$userid==184),]
rat186<-rating[which(rating$userid==186),]

> intersect(rat65$bookid ,rat184$bookid)
integer(0)
> intersect(rat65$bookid ,rat186$bookid)
[1]  65 375

最后发现,用户65与用户186都给图书65和图书375打过分。我们再打分出用户186的评分记录。


> rat186
userid bookid pref
2790    186     65    7
2791    186    887    5
2792    186    529    3
2793    186    375    6
2794    186    566    7
2795    186    169    4
2796    186    907    1
2797    186    821    2
2798    186    720    5
2799    186    642    5
2800    186    137    3
2801    186    744    1
2802    186    896    2
2803    186    156    6
2804    186    392    3
2805    186    386    3
2806    186    901    7
2807    186     69    6
2808    186    845    6
2809    186    998    3

用户186,还给图书887打过分,所以对于给65用户推荐图书887,是合理的。

我们通过一个实际的图书推荐的案例,更进一步地了解了如何用Mahout构建推荐系统。

######################################################
看文字不过瘾,作者视频讲解,请访问网站:http://onbook.me/video
######################################################

转载请注明出处:
http://blog.fens.me/hadoop-mahout-recommend-book/

打赏作者