• Posts tagged "ETL"

Blog Archives

Nifi从安装开始

解构数据平台系列文章,数据越来越重要,针对数据平台系统要求和设计规范也越来越多,为了匹配数据处理个性化和复杂度的要求,新的理论和名词层出不穷,同时也诞生了各种各样的新工具。

本系列文章主要介绍数据平台架构设计,搭建过程,数据处理的各种新工具的使用,从数据采集、数据清洗,到数据交换、数据治理,再到工作流引擎、规则引擎,最后到数据可视化的整套数据系统全流程。

关于作者:

  • 张丹,分析师/程序员/Quant: R,Java,Nodejs
  • blog: http://fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/linux-nifi-install/

前言

最近有一个数据项目要搭建数据仓库平台,最核心的一个功能,就是从多数据源中同步数据。网上有不少的解决方案,就放弃了自己造车轮的想法,相比较最后选择了Nifi。关于Nifi的文档不多,我就自己一步一步来使用,把整个实现的过程记录下来,方便给后人参考。

目录

  1. Apache Nifi是什么
  2. Apache Nifi安装
  3. Apache Nifi运行第一个实例

1. Apache Nifi是什么

Apache Nifi是一个易于使用,功能强大且可靠的系统来处理和分发数据。

Apache NiFi 最初由美国国家安全局(NSA)开发和使用的一个可视化、可定制的数据集成产品。2014 年 NSA 将其贡献给了 Apache 开源社区,2015 年 7 月成为 Apache 顶级项目。

Apache NiFi支持数据路由,转换和系统中介逻辑的强大且可扩展的有向图。NiFi 通过拖拽界面、配置参数、简单地连接,即可完成对数据流的托管和系统间的自动化传输,使用者可以可视化整个过程并实时进行更改。

Apache NiFi遵循APACHE LICENSE, VERSION 2.0 开源协议。

2. Apache Nifi安装

首先,下载Nifi的最新版本1.12.1二进制版本,下载地址为: http://nifi.apache.org/download.html

本机系统环境

  • 操作系统:Ubuntu 20.04.1 LTS
  • Java版本:java version “11.0.7” 2020-04-14 LTS
# 登陆Ubuntu系统
~ pwd
/home/conan

# 新建文件夹
~ mkdir deploy

# 进入deploy目录  
~ cd deploy

# 下载nifi软件
~ wget https://mirrors.tuna.tsinghua.edu.cn/apache/nifi/1.12.1/nifi-1.12.1-bin.zip

# 解压
~ unzip nifi-1.12.1-bin.zip

# 进入nifi目录 
~ cd nifi-1.12.1

# 查看nifi状态
~ bin/nifi.sh status
nifi.sh: JAVA_HOME not set; results may vary
nifi.sh: java command not found

提示缺少JAVA环境变量,我们来配置Java环境变量。

# 打开系统文件(在文件最后面增加配置)
~ sudo vi /etc/environment

JAVA_HOME=/home/conan/deploy/jdk-11.0.7
PATH=$PATH:$JAVA_HOME/bin

让配置生效

# 执行命令
~ source /etc/environment

# 查看nifi状态,JAVA路径已经生效
~ bin/nifi.sh status
Java home: /home/conan/deploy/jdk-11.0.7
NiFi home: /home/conan/deploy/nifi-1.12.1

Bootstrap Config File: /home/conan/deploy/nifi-1.12.1/conf/bootstrap.conf

2020-11-05 09:38:44,837 INFO [main] org.apache.nifi.bootstrap.Command Apache NiFi is not running

# 安装nifi
~ sudo bin/nifi.sh install
Service nifi installed

启动nifi

~ bin/nifi.sh start

Java home: /home/conan/deploy/jdk-11.0.7
NiFi home: /home/conan/deploy/nifi-1.12.1

Bootstrap Config File: /home/conan/deploy/nifi-1.12.1/conf/bootstrap.conf

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.nifi.bootstrap.util.OSUtils (file:/home/conan/deploy/nifi-1.12.1/lib/bootstrap/nifi-bootstrap-1.12.1.jar) to method java.lang.ProcessImpl.pid()
WARNING: Please consider reporting this to the maintainers of org.apache.nifi.bootstrap.util.OSUtils
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release

查看nifi运行状态,

~ bin/nifi.sh status

Java home: /home/conan/deploy/jdk-11.0.7
NiFi home: /home/conan/deploy/nifi-1.12.1

Bootstrap Config File: /home/conan/deploy/nifi-1.12.1/conf/bootstrap.conf

2020-11-05 09:41:11,846 INFO [main] org.apache.nifi.bootstrap.Command Apache NiFi is currently running, listening to Bootstrap on port 42913, PID=3498

# 查看系统进程,3498进程号为nifi主进程
~ ps -aux|grep nifi
conan       3475  0.0  0.0   2608   152 pts/0    S    09:40   0:00 /bin/sh bin/nifi.sh start
conan       3477  0.2  0.3 3620512 61732 pts/0   Sl   09:40   0:01 /home/conan/deploy/jdk-11.0.7/bin/java -cp /home/conan/deploy/nifi-1.12.1/conf:/home/conan/deploy/nifi-1.12.1/lib/bootstrap/* -Xms12m -Xmx24m -Dorg.apache.nifi.bootstrap.config.log.dir=/home/conan/deploy/nifi-1.12.1/logs -Dorg.apache.nifi.bootstrap.config.pid.dir=/home/conan/deploy/nifi-1.12.1/run -Dorg.apache.nifi.bootstrap.config.file=/home/conan/deploy/nifi-1.12.1/conf/bootstrap.conf org.apache.nifi.bootstrap.RunNiFi start
conan       3498  9.6  5.6 4429452 898504 pts/0  Sl   09:40   1:15 /home/conan/deploy/jdk-11.0.7/bin/java -classpath /home/conan/deploy/nifi-1.12.1/./conf:/home/conan/deploy/nifi-1.12.1/./lib/nifi-nar-utils-1.12.1.jar:/home/conan/deploy/nifi-1.12.1/./lib/logback-classic-1.2.3.jar:/home/conan/deploy/nifi-1.12.1/./lib/slf4j-api-1.7.30.jar:/home/conan/deploy/nifi-1.12.1/./lib/nifi-framework-api-1.12.1.jar:/home/conan/deploy/nifi-1.12.1/./lib/jul-to-slf4j-1.7.30.jar:/home/conan/deploy/nifi-1.12.1/./lib/nifi-runtime-1.12.1.jar:/home/conan/deploy/nifi-1.12.1/./lib/nifi-properties-1.12.1.jar:/home/conan/deploy/nifi-1.12.1/./lib/javax.servlet-api-3.1.0.jar:/home/conan/deploy/nifi-1.12.1/./lib/jetty-schemas-3.1.jar:/home/conan/deploy/nifi-1.12.1/./lib/jcl-over-slf4j-1.7.30.jar:/home/conan/deploy/nifi-1.12.1/./lib/log4j-over-slf4j-1.7.30.jar:/home/conan/deploy/nifi-1.12.1/./lib/nifi-api-1.12.1.jar:/home/conan/deploy/nifi-1.12.1/./lib/logback-core-1.2.3.jar:/home/conan/deploy/nifi-1.12.1/./lib/java11/javax.activation-api-1.2.0.jar:/home/conan/deploy/nifi-1.12.1/./lib/java11/jaxb-api-2.3.0.jar:/home/conan/deploy/nifi-1.12.1/./lib/java11/jaxb-impl-2.3.0.jar:/home/conan/deploy/nifi-1.12.1/./lib/java11/javax.annotation-api-1.3.2.jar:/home/conan/deploy/nifi-1.12.1/./lib/java11/jaxb-core-2.3.0.jar -Dorg.apache.jasper.compiler.disablejsr199=true -Xmx512m -Xms512m -Dcurator-log-only-first-connection-issue-as-error-level=true -Djavax.security.auth.useSubjectCredsOnly=true -Djava.security.egd=file:/dev/urandom -Dzookeeper.admin.enableServer=false -Dsun.net.http.allowRestrictedHeaders=true -Djava.net.preferIPv4Stack=true -Djava.awt.headless=true -Djava.protocol.handler.pkgs=sun.net.www.protocol -Dnifi.properties.file.path=/home/conan/deploy/nifi-1.12.1/./conf/nifi.properties -Dnifi.bootstrap.listen.port=37955 -Dapp=NiFi -Dorg.apache.nifi.bootstrap.config.log.dir=/home/conan/deploy/nifi-1.12.1/logs org.apache.nifi.NiFi

# 查看系统端口, 默认8080为web界面端口
~ netstat -nltp
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 127.0.0.1:42913         0.0.0.0:*               LISTEN      3498/java
tcp        0      0 0.0.0.0:8080            0.0.0.0:*               LISTEN      3498/java
tcp        0      0 127.0.0.53:53           0.0.0.0:*               LISTEN      -
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      -
tcp6       0      0 127.0.0.1:37955         :::*                    LISTEN      3477/java
tcp6       0      0 :::22                   :::*                    LISTEN      -

在浏览器中打开,http://192.168.1.13:8080。你可以输入你自己的IP进行访问。初始化时是不带权限的,后面可以配置启用全新设置。

界面还是很不错的,打开后就是一个完整的画布,我们可以在画布上来进行数据调用任务的编排。

3.Apache Nifi运行第一个实例

任务:产生一组随机文件,写到/home/conan/demo目录下的文件中。

为完成第一个任务,我们来建立一个工作流图,一共需要5个操作。

  • 第一个操作,GenerateFlowFile,用于产生随机文件。
  • 第二个操作,PutFile,用于写入本地文件。
  • 第三个操作,success,用于结束标识位。
  • 第四个操作,Name success,是执行队列,用于连接GenerateFlowFile 和 PutFile,当GenerateFlowFile成功后,产生数据会存在这个过程中。
  • 第五个操作,Name failure success,是执行队列,用于连接PutFile和结束标识,PutFile无论成功或失败,都会起这个流程到结束。

我们需要对 GenerateFlowFile 进行配置,在PROPERTIES标签页,可以设置随机生成的文件大小,也可以自定义一些文字的信息,我把输出文件设置为Hello world,会被写到生成的文件中。

在第四步的连接节点,设置压力阈值为2,可以同时生成2个文件,默认为10000。

再调整 PutFile 配置,在PROPERTIES标签页,可以设置文件的输出目录为/home/conan/demo/ ,我们生成的文件可以到这个目录中找到。

在第五步连接节点,设置压力阈值为5,可以同时写5个文件到磁盘,默认为10000。

然后,启动每一个流程,变为运行状态,这样生成的文件就会被写入到指定的目录了。在输出目录,查看生成的文件。


# 查看输出目录,共有5个文件
~ ll /home/conan/demo
total 1276
drwxrwxr-x 2 conan conan 1282048 Nov  6 01:09 ./
drwxr-xr-x 6 conan conan    4096 Nov  6 01:09 ../
-rw-rw-r-- 1 conan conan      11 Nov  6 01:09 1c108cb4-6d8d-43c7-b8f1-01f796103eb0
-rw-rw-r-- 1 conan conan      11 Nov  6 01:09 2352fea5-2e7a-43e8-8c59-7059d4d6f878
-rw-rw-r-- 1 conan conan      11 Nov  6 01:09 2d3e9fad-fe6e-46d4-8dc1-3e0465994130
-rw-rw-r-- 1 conan conan      11 Nov  6 01:09 965d6888-b612-40cc-af73-46a1c5ed74ec
-rw-rw-r-- 1 conan conan      11 Nov  6 01:09 cccf11bf-6ef3-418b-b2c8-22c9222bc55a

# 查看其中一个文件内容
~ cat /home/conan/demo/1c108cb4-6d8d-43c7-b8f1-01f796103eb0
Hello world

这样就完成了第一个Nifi的实例,总体来说还是比较容易上手的,没有遇到太复杂的环境配置问题。Nifi是一个功能强大的工具,后面我会继续介绍Nifi的使用的详细内容。

转载请注明出处:
http://blog.fens.me/linux-nifi-install/

打赏作者

用R语言把数据玩出花样

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-transform/

前言

作为数据分析师,每天都有大量的数据需要处理,我们会根据业务的要求做各种复杂的报表,包括了分组、排序、过滤、转置、差分、填充、移动、合并、分裂、分布、去重、找重、填充 等等的操作。

有时为了计算一个业务指标,你的SQL怎么写都不会少于10行时,另外你可能也会抱怨Excel功能不够强大,这个时候R语言绝对是不二的选择了。用R语言可以高效地、优雅地解决数据处理的问题,让R来帮你打开面向数据的思维模式。

目录

  1. 为什么要用R语言做数据处理?
  2. 数据处理基础
  3. 个性化的数据变换需求

1. 为什么要用R语言做数据处理?

R语言是非常适合做数据处理的编程语言,因为R语言的设计理念,就是面向数据的,为了解决数据问题。读完本文,相信你就能明白,什么是面向数据的设计了。

一个BI工程师每天的任务,都是非常繁琐的数据处理,如果用Java来做简直就是折磨,但是换成R语言来做,你会找到乐趣的。

当接到一个数据处理的任务后,我们可以把任务拆解为很多小的操作,包括了分组、排序、过滤、转置、差分、填充、移动、合并、分裂、分布、去重、找重等等的操作。对于实际应用的复杂的操作来说,就是把这些小的零碎的操作,拼装起来就好了。

在开始之前,我们要先了解一下R语言支持的数据类型,以及这些常用类型的特点。对于BI的数据处理的工作来说,可能有4种类型是最常用的,分别是向量、矩阵、数据框、时间序列。

  • 向量 Vector : c()
  • 矩阵 Matrix: matrix()
  • 数据框 DataFrame: data.frame()
  • 时间序列 XTS: xts()

我主要是用R语言来做量化投资,很多的时候,都是和时间序列类型数据打交道,所以我把时间序列,也定义为R语言最常用的数据处理的类型。时间序列类型,使用的是第三方包xts中定义的类型。

2. 数据处理基础

本机的系统环境:

  • Win10 64bit
  • R: version 3.2.3 64bit

2.1 创建一个数据集

创建一个向量数据集。


> x<-1:20;x
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

创建一个矩阵数据集。


> m<-matrix(1:40,ncol=5);m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    9   17   25   33
[2,]    2   10   18   26   34
[3,]    3   11   19   27   35
[4,]    4   12   20   28   36
[5,]    5   13   21   29   37
[6,]    6   14   22   30   38
[7,]    7   15   23   31   39
[8,]    8   16   24   32   40

创建一个数据框数据集。


> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b          c
1 1 A  1.1519118
2 2 A  0.9921604
3 3 B -0.4295131
4 4 B  1.2383041
5 5 A -0.2793463

创建一个时间序列数据集,时间序列使用的第三方的xts类型。关于xts类型的详细介绍,请参考文章 可扩展的时间序列xts。


> library(xts)
> xts(1:10,order.by=as.Date('2017-01-01')+1:10)
           [,1]
2017-01-02    1
2017-01-03    2
2017-01-04    3
2017-01-05    4
2017-01-06    5
2017-01-07    6
2017-01-08    7
2017-01-09    8
2017-01-10    9
2017-01-11   10

2.2 查看数据概况

通常进行数据分析的第一步是,查看一下数据的概况信息,在R语言里可以使用summary()函数来完成。


# 查看矩阵数据集的概况
> m<-matrix(1:40,ncol=5)
> summary(m)
       V1             V2              V3              V4              V5       
 Min.   :1.00   Min.   : 9.00   Min.   :17.00   Min.   :25.00   Min.   :33.00  
 1st Qu.:2.75   1st Qu.:10.75   1st Qu.:18.75   1st Qu.:26.75   1st Qu.:34.75  
 Median :4.50   Median :12.50   Median :20.50   Median :28.50   Median :36.50  
 Mean   :4.50   Mean   :12.50   Mean   :20.50   Mean   :28.50   Mean   :36.50  
 3rd Qu.:6.25   3rd Qu.:14.25   3rd Qu.:22.25   3rd Qu.:30.25   3rd Qu.:38.25  
 Max.   :8.00   Max.   :16.00   Max.   :24.00   Max.   :32.00   Max.   :40.00  

# 查看数据框数据集的概况信息
> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5))
> summary(df)
       a     b           c          
 Min.   :1   A:3   Min.   :-1.5638  
 1st Qu.:2   B:2   1st Qu.:-1.0656  
 Median :3         Median :-0.2273  
 Mean   :3         Mean   :-0.1736  
 3rd Qu.:4         3rd Qu.: 0.8320  
 Max.   :5         Max.   : 1.1565  

通过查看概况,可以帮助我们简单了解数据的一些统计特征。

2.3 数据合并

我们经常需要对于数据集,进行合并操作,让数据集满足处理的需求。对于不同类型的数据集,有不同的处理方法。

向量类型


> x<-1:5
> y<-11:15
> c(x,y)
 [1]  1  2  3  4  5 11 12 13 14 15

数据框类型的合并操作。


> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b          c
1 1 A  1.1519118
2 2 A  0.9921604
3 3 B -0.4295131
4 4 B  1.2383041
5 5 A -0.2793463

# 合并新行
> rbind(df,c(11,'A',222))
   a b                  c
1  1 A    1.1519117540872
2  2 A  0.992160365445798
3  3 B -0.429513109491881
4  4 B   1.23830410085338
5  5 A -0.279346281854269
6 11 A                222

# 合并新列
> cbind(df,x=LETTERS[1:5])
  a b          c x
1 1 A  1.1519118 A
2 2 A  0.9921604 B
3 3 B -0.4295131 C
4 4 B  1.2383041 D
5 5 A -0.2793463 E

# 合并新列
> merge(df,LETTERS[3:5])
   a b          c y
1  1 A  1.1519118 C
2  2 A  0.9921604 C
3  3 B -0.4295131 C
4  4 B  1.2383041 C
5  5 A -0.2793463 C
6  1 A  1.1519118 D
7  2 A  0.9921604 D
8  3 B -0.4295131 D
9  4 B  1.2383041 D
10 5 A -0.2793463 D
11 1 A  1.1519118 E
12 2 A  0.9921604 E
13 3 B -0.4295131 E
14 4 B  1.2383041 E
15 5 A -0.2793463 E

2.4 累计计算

累计计算,是很常用的一种计算方法,就是把每个数值型的数据,累计求和或累计求积,从而反应数据的增长的一种特征。


# 向量x
> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10

# 累计求和
> cum_sum<-cumsum(x)

# 累计求积
> cum_prod<-cumprod(x)

# 拼接成data.frame
> data.frame(x,cum_sum,cum_prod)
    x cum_sum cum_prod
1   1       1        1
2   2       3        2
3   3       6        6
4   4      10       24
5   5      15      120
6   6      21      720
7   7      28     5040
8   8      36    40320
9   9      45   362880
10 10      55  3628800

我们通常用累计计算,记录中间每一步的过程,看到的数据处理过程的特征。

2.5 差分计算

差分计算,是用向量的后一项减去前一项,所获得的差值,差分的结果反映了离散量之间的一种变化。


> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10

# 计算1阶差分
> diff(x)
[1] 1 1 1 1 1 1 1 1 1

# 计算2阶差分
> diff(x,2)
[1] 2 2 2 2 2 2 2 2

# 计算2阶差分,迭代2次
> diff(x,2,2)
[1] 0 0 0 0 0 0

下面做一个稍微复杂一点的例子,通过差分来发现数据的规律。


# 对向量2次累积求和
> x <- cumsum(cumsum(1:10));x
 [1]   1   4  10  20  35  56  84 120 165 220

# 计算2阶差分
> diff(x, lag = 2)
[1]   9  16  25  36  49  64  81 100

# 计算1阶差分,迭代2次
> diff(x, differences = 2)
[1]  3  4  5  6  7  8  9 10

# 同上
> diff(diff(x))
[1]  3  4  5  6  7  8  9 10

差分其实是很常见数据的操作,但这种操作是SQL很难表达的,所以可能会被大家所忽视。

2.6 分组计算

分组是SQL中,支持的一种数据变换的操作,对应于group by的语法。

比如,我们写一个例子。创建一个数据框有a,b,c的3列,其中a,c列为数值型,b列为字符串,我们以b列分组,求出a列与c的均值。


# 创建数据框
> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b           c
1 1 A  1.28505418
2 2 A -0.04687263
3 3 B  0.25383533
4 4 B  0.70145787
5 5 A -0.11470372

# 执行分组操作
> aggregate(. ~ b, data = df, mean)
  b        a         c
1 A 2.666667 0.3744926
2 B 3.500000 0.4776466

同样的数据集,以b列分组,对a列求和,对c列求均值。当对不同列,进行不同的操作时,我们同时也需要换其他函数来处理。


# 加载plyr库
> library(plyr)

# 执行分组操作
> ddply(df,.(b),summarise,
+       sum_a=sum(a),
+       mean_c=mean(c))
  b sum_a      mean_c
1 A     8 -0.05514761
2 B     7  0.82301276

生成的结果,就是按b列进行分组后,a列求和,c列求均值。

2.7 分裂计算

分裂计算,是把一个向量按照一列规则,拆分成多个向量的操作。

如果你想把1:10的向量,按照单双数,拆分成2个向量。


> split(1:10, 1:2)
$`1`
[1] 1 3 5 7 9

$`2`
[1]  2  4  6  8 10

另外,可以用因子类型来控制分裂。分成2步操作,第一步先分成与数据集同样长度的因子,第二步进行分裂,可以把一个大的向量拆分成多个小的向量。


# 生成因子规则
> n <- 3; size <- 5
> fat <- factor(round(n * runif(n * size)));fat
 [1] 2 3 2 1 1 0 0 2 0 1 2 3 1 1 1
Levels: 0 1 2 3

# 生成数据向量
> x <- rnorm(n * size);x
 [1]  0.68973936  0.02800216 -0.74327321  0.18879230 -1.80495863  1.46555486  0.15325334  2.17261167  0.47550953
[10] -0.70994643  0.61072635 -0.93409763 -1.25363340  0.29144624 -0.44329187

# 对向量以因子的规则进行拆分
> split(x, fat)
$`0`
[1] 1.4655549 0.1532533 0.4755095

$`1`
[1]  0.1887923 -1.8049586 -0.7099464 -1.2536334  0.2914462 -0.4432919

$`2`
[1]  0.6897394 -0.7432732  2.1726117  0.6107264

$`3`
[1]  0.02800216 -0.93409763

这种操作可以非常有效地,对数据集进行分类整理,比if..else的操作,有本质上的提升。

2.8 排序

排序是所有数据操作中,最常见一种需求了。在R语言中,你可以很方便的使用排序的功能,并不用考虑时间复杂度与空间复杂度的问题,除非你自己非要用for循环来实现。

对向量进行排序。


# 生成一个乱序的向量
> x<-sample(1:10);x
 [1]  6  2  5  1  9 10  8  3  7  4

# 对向量排序 
> x[order(x)]
 [1]  1  2  3  4  5  6  7  8  9 10

以数据框某一列进行排序。


> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b          c
1 1 A  1.1780870
2 2 A -1.5235668
3 3 B  0.5939462
4 4 B  0.3329504
5 5 A  1.0630998

# 自定义排序函数 
> order_df<-function(df,col,decreasing=FALSE){
+     df[order(df[,c(col)],decreasing=decreasing),]
+ }

# 以c列倒序排序
> order_df(df,'c',decreasing=TRUE)
  a b          c
1 1 A  1.1780870
5 5 A  1.0630998
3 3 B  0.5939462
4 4 B  0.3329504
2 2 A -1.5235668

排序的操作,大多都是基于索引来完成的,用order()函数来生成索引,再匹配的数据的数值上面。

2.9 去重与找重

去重,是把向量中重复的元素过滤掉。找重,是把向量中重复的元素找出来。


> x<-c(3:6,5:8);x
[1] 3 4 5 6 5 6 7 8

# 去掉重复元素
> unique(x)
[1] 3 4 5 6 7 8

# 找到重复元素,索引位置
> duplicated(x)
[1] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE

# 找到重复元素
> x[duplicated(x)]
[1] 5 6

2.10 转置

转置是一个数学名词,把行和列进行互换,一般用于对矩阵的操作。


# 创建一个3行5列的矩阵
> m<-matrix(1:15,ncol=5);m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    4    7   10   13
[2,]    2    5    8   11   14
[3,]    3    6    9   12   15

# 转置后,变成5行3列的矩阵
> t(m)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
[5,]   13   14   15

2.11 过滤

过滤,是对数据集按照某种规则进行筛选,去掉不符合条件的数据,保留符合条件的数据。对于NA值的操作,主要都集中在了过滤操作和填充操作中,因此就不在单独介绍NA值的处理了。


# 生成数据框
> df<-data.frame(a=c(1,NA,NA,2,NA),
+     b=c('B','A','B','B',NA),
+     c=c(rnorm(2),NA,NA,NA));df
   a    b          c
1  1    B -0.3041839
2 NA    A  0.3700188
3 NA    B         NA
4  2    B         NA
5 NA <NA>         NA

# 过滤有NA行的数据
> na.omit(df)
  a b          c
1 1 B -0.3041839

# 过滤,保留b列值为B的数据
> df[which(df$b=='B'),]
   a b          c
1  1 B -0.3041839
3 NA B         NA
4  2 B         NA

过滤,类似与SQL语句中的 WHERE 条件语句,如果你用100个以上的过滤条件,那么你的程序就会比较复杂了,最好想办法用一些巧妙的函数或者设计模式,来替换这些过滤条件。

2.12 填充

填充,是一个比较有意思的操作,你的原始数据有可能会有缺失值NA,在做各种计算时,就会出现有问题。一种方法是,你把NA值都去掉;另外一种方法是,你把NA值进行填充后再计算。那么在填充值时,就有一些讲究了。

把NA值进行填充。


# 生成数据框
> df<-data.frame(a=c(1,NA,NA,2,NA),
+      b=c('B','A','B','B',NA),
+      c=c(rnorm(2),NA,NA,NA));df
   a    b          c
1  1    B  0.2670988
2 NA    A -0.5425200
3 NA    B         NA
4  2    B         NA
5 NA <NA>         NA

# 把数据框a列的NA,用9进行填充
> na.fill(df$a,9)
[1] 1 9 9 2 9

# 把数据框中的NA,用1进行填充
> na.fill(df,1)
     a      b      c           
[1,] " 1"   "B"    " 0.2670988"
[2,] "TRUE" "A"    "-0.5425200"
[3,] "TRUE" "B"    "TRUE"      
[4,] " 2"   "B"    "TRUE"      
[5,] "TRUE" "TRUE" "TRUE"     

填充时,有时并不是用某个固定的值,而是需要基于某种规则去填充。


# 生成一个zoo类型的数据
> z <- zoo(c(2, NA, 1, 4, 5, 2), c(1, 3, 4, 6, 7, 8));z
 1  3  4  6  7  8 
 2 NA  1  4  5  2 

# 对NA进行线性插值
> na.approx(z) 
       1        3        4        6        7        8 
2.000000 1.333333 1.000000 4.000000 5.000000 2.000000 

# 对NA进行线性插值
> na.approx(z, 1:6)
  1   3   4   6   7   8 
2.0 1.5 1.0 4.0 5.0 2.0 

# 对NA进行样条插值
> na.spline(z)
        1         3         4         6         7         8 
2.0000000 0.1535948 1.0000000 4.0000000 5.0000000 2.0000000 

另外,我们可以针对NA的位置进行填充,比如用前值来填充或后值来填充。


> df
   a    b          c
1  1    B  0.2670988
2 NA    A -0.5425200
3 NA    B         NA
4  2    B         NA
5 NA <NA>         NA

# 用当前列中,NA的前值来填充
> na.locf(df)
   a b          c
1  1 B  0.2670988
2  1 A -0.5425200
3  1 B -0.5425200
4  2 B -0.5425200
5  2 B -0.5425200

# 用当前列中,NA的后值来填充
> na.locf(df,fromLast=TRUE)
   a b          c
1  1 B  0.2670988
2  2 A -0.5425200
3  2 B       <NA>
4  2 B       <NA>

2.13 计数

计数,是统计同一个值出现的次数。


# 生成30个随机数的向量
> set.seed(0)
> x<-round(rnorm(30)*5);x
 [1]  6 -2  7  6  2 -8 -5 -1  0 12  4 -4 -6 -1 -1 -2  1 -4  2 -6 -1  2  1  4  0  3  5 -3 -6  0

# 统计每个值出现的次数
> table(x)
x
-8 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7 12 
 1  3  1  2  1  2  4  3  2  3  1  2  1  2  1  1 

用直方图画出。


> hist(x,xlim = c(-10,13),breaks=20)

2.14 统计分布

统计分布,是用来判断数据是否是满足某种统计学分布,如果能够验证了,那么我们就可以用到这种分布的特性来理解我们的数据集的情况了。常见的连续型的统计分布有9种,其中最常用的就是正态分布的假设。关于统计分布的详细介绍,请参考文章 常用连续型分布介绍及R语言实现

  • runif() :均匀分布
  • rnorm() :正态分布
  • rexp() :指数分布
  • rgamma() :伽马分布
  • rweibull() :韦伯分布
  • rchisq() :卡方分布
  • rf() :F分布
  • rt() :T分布
  • rbeta() :贝塔分布

统计模型定义的回归模型,就是基于正态分布的做的数据假设,如果残差满足正态分布,模型的指标再漂亮都是假的。如果你想进一步了解回归模型,请参考文章R语言解读一元线性回归模型

下面用正态分布,来举例说明一下。假设我们有一组数据,是人的身高信息,我们知道平均身高是170cm,然后我们算一下,这组身高数据是否满足正态分布。


# 生成身高数据
> set.seed(1)
> x<-round(rnorm(100,170,10))
> head(x,20)
 [1] 164 172 162 186 173 162 175 177 176 167 185 174 164 148 181 170 170 179 178 176

# 画出散点图 
> plot(x)

通过散点图来观察,发现数据是没有任何规律。接下来,我们进行正态分布的检验,Shapiro-Wilk进行正态分布检验。


> shapiro.test(x)
	Shapiro-Wilk normality test
data:  x
W = 0.99409, p-value = 0.9444

该检验原假设为H0:数据集符合正态分布,统计量W为。统计量W的最大值是1,越接近1,表示样本与正态分布越匹配。p值,如果p-value小于显著性水平α(0.05),则拒绝H0。检验结论: W接近1,p-value>0.05,不能拒绝原假设,所以数据集S符合正态分布!

同时,我们也可以用QQ图,来做正态分布的检验。


> qqnorm(x)
> qqline(x,col='red')

图中,散点均匀的分布在对角线,则说明这组数据符合正态分布。

为了,更直观地对正态分布的数据进行观察,我们可以用上文中计数操作时,使用的直方图进行观察。


> hist(x,breaks=10)

通过计数的方法,发现数据形状如钟型,中间高两边低,中间部分的数量占了95%,这就是正态的特征。当判断出,数据是符合正态分布后,那么才具备了可以使用一些的模型的基础。

2.15 数值分段

数值分段,就是把一个连续型的数值型数据,按区间分割为因子类型的离散型数据。


> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10

# 把向量转换为3段因子,分别列出每个值对应因子
> cut(x, 3)
 [1] (0.991,4] (0.991,4] (0.991,4] (0.991,4] (4,7]     (4,7]     (4,7]     (7,10]    (7,10]    (7,10]   
Levels: (0.991,4] (4,7] (7,10]

# 对因子保留2位精度,并支持排序
> cut(x, 3, dig.lab = 2, ordered = TRUE)
 [1] (0.99,4] (0.99,4] (0.99,4] (0.99,4] (4,7]    (4,7]    (4,7]    (7,10]   (7,10]   (7,10]  
Levels: (0.99,4] < (4,7] < (7,10]

2.16 集合操作

集合操作,是对2个向量的操作,处理2个向量之间的数值的关系,找到包含关系、取交集、并集、差集等。


# 定义2个向量x,y
> x<-c(3:8,NA);x
[1]  3  4  5  6  7  8 NA
> y<-c(NA,6:10,NA);y
[1] NA  6  7  8  9 10 NA

# 判断x与y重复的元素的位置
> is.element(x, y)
[1] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE

# 判断y与x重复的元素的位置
> is.element(y, x)
[1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE

# 取并集
> union(x, y)
[1]  3  4  5  6  7  8 NA  9 10

# 取交集
> intersect(x, y)
[1]  6  7  8 NA

# 取x有,y没有元素
> setdiff(x, y)
[1] 3 4 5

# 取y有,x没有元素
> setdiff(y, x)
[1]  9 10

# 判断2个向量是否相等
> setequal(x, y)
[1] FALSE

2.17 移动窗口

移动窗口,是用来按时间周期观察数据的一种方法。移动平均,就是一种移动窗口的最常见的应用了。

在R语言的的TTR包中,支持多种的移动窗口的计算。

  • runMean(x) :移动均值
  • runSum(x) :移动求和
  • runSD(x) :移动标准差
  • runVar(x) :移动方差
  • runCor(x,y) :移动相关系数
  • runCov(x,y) :移动协方差
  • runMax(x) :移动最大值
  • runMin(x) :移动最小值
  • runMedian(x):移动中位数

下面我们用移动平均来举例说明一下,移动平均在股票交易使用的非常普遍,是最基础的趋势判断的根踪指标了。


# 生成50个随机数
> set.seed(0)
> x<-round(rnorm(50)*10);head(x,10)
 [1]  13  -3  13  13   4 -15  -9  -3   0  24

# 加载TTR包
> library(TTR)

# 计算周期为3的移动平均值
> m3<-SMA(x,3);head(m3,10)
 [1]         NA         NA  7.6666667  7.6666667 10.0000000  0.6666667 -6.6666667 -9.0000000 -4.0000000
[10]  7.0000000

# 计算周期为5的移动平均值
> m5<-SMA(x,5);head(m5,10)
 [1]   NA   NA   NA   NA  8.0  2.4  1.2 -2.0 -4.6 -0.6

当计算周期为3的移动平均值时,结果的前2个值是NA,计算的算法是


(第一个值 + 第二个值 + 第三个值)  /3 = 第三个值的移动平均值
(13      +    -3   +     13)    /3 = 7.6666667

画出图形


> plot(x,type='l')
> lines(m3,col='blue')
> lines(m5,col='red')

图中黑色线是原始数据,蓝色线是周期为3的移动平均值,红色线是周期为5的移动平均值。这3个线中,周期越大的越平滑,红色线波动是最小的,趋势性是越明显的。如果你想更深入的了解移动平均线在股票中的使用情况,请参考文章二条均线打天下

2.18 时间对齐

时间对齐,是在处理时间序列类型时常用到的操作。我们在做金融量化分析时,经常遇到时间不齐的情况,比如某支股票交易很活跃,每一秒都有交易,而其他不太活跃的股票,可能1分钟才有一笔交易,当我们要同时分析这2只股票的时候,就需要把他们的交易时间进行对齐。


# 生成数据,每秒一个值
> a<-as.POSIXct("2017-01-01 10:00:00")+0:300

# 生成数据,每59秒一个值
> b<-as.POSIXct("2017-01-01 10:00")+seq(1,300,59)

# 打印a
> head(a,10)
 [1] "2017-01-01 10:00:00 CST" "2017-01-01 10:00:01 CST" "2017-01-01 10:00:02 CST" "2017-01-01 10:00:03 CST"
 [5] "2017-01-01 10:00:04 CST" "2017-01-01 10:00:05 CST" "2017-01-01 10:00:06 CST" "2017-01-01 10:00:07 CST"
 [9] "2017-01-01 10:00:08 CST" "2017-01-01 10:00:09 CST"

# 打印b 
> head(b,10)
[1] "2017-01-01 10:00:01 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:59 CST" "2017-01-01 10:02:58 CST"
[5] "2017-01-01 10:03:57 CST" "2017-01-01 10:04:56 CST"

按分钟进行对齐,把时间都对齐到分钟线上。


# 按分钟对齐
> a1<-align.time(a, 1*60)
> b1<-align.time(b, 1*60)

# 查看对齐后的结果
> head(a1,10)
 [1] "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST"
 [5] "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST"
 [9] "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST"

> head(b1,10)
[1] "2017-01-01 10:01:00 CST" "2017-01-01 10:02:00 CST" "2017-01-01 10:02:00 CST" "2017-01-01 10:03:00 CST"
[5] "2017-01-01 10:04:00 CST" "2017-01-01 10:05:00 CST"

由于a1数据集,每分钟有多条数据,取每分钟的最后一条代表这分钟就行。


> a1[endpoints(a1,'minutes')]
[1] "2017-01-01 10:01:00 CST" "2017-01-01 10:02:00 CST" "2017-01-01 10:03:00 CST" "2017-01-01 10:04:00 CST"
[5] "2017-01-01 10:05:00 CST" "2017-01-01 10:06:00 CST"

这样子就完成了时间对齐,把不同时间的数据放到都一个维度中了。

3. 个性化的数据变换需求

我们上面已经介绍了,很多种的R语言数据处理的方法,大多都是基于R语言内置的函数或第三方包来完成的。在实际的工作中,实际还有再多的操作,完全是各性化的。

3.1 过滤数据框中,列数据全部为空的列

空值,通常都会给我们做数值计算,带来很多麻烦。有时候一列的数据都是空时,我们需要先把这一个过滤掉,再进行数据处理。

用R语言程序进行实现


# 判断哪列的值都是NA
na_col_del_df<-function(df){
  df[,which(!apply(df,2,function(x) all(is.na(x))))]  
} 

# 生成一个数据集
> df<-data.frame(a=c(1,NA,2,4),b=rep(NA,4),c=1:4);df
   a  b c
1  1 NA 1
2 NA NA 2
3  2 NA 3
4  4 NA 4

# 保留非NA的列
> na_col_del_df(df)
   a c
1  1 1
2 NA 2
3  2 3
4  4 4

3.2 替换数据框中某个区域的数据

我们想替换数据框中某个区域的数据,那么应该怎么做呢?

找到第一个数据框中,与第二个数据框中匹配的行的值作为条件,然后替换这一行的其他指定列的值。


> replace_df<-function(df1,df2,keys,vals){
+     row1<-which(apply(mapply(match,df1[,keys],df2[,keys])>0,1,all))
+     row2<-which(apply(mapply(match,df2[,keys],df1[,keys])>0,1,all))
+     df1[row1,vals]<-df2[row2,vals]
+     return(df1)
+ }

# 第一个数据框 
> df1<-data.frame(A=c(1,2,3,4),B=c('a','b','c','d'),C=c(0,4,0,4),D=1:4);df1
  A B C D
1 1 a 0 1
2 2 b 4 2
3 3 c 0 3
4 4 d 4 4

# 第二个数据框 
> df2<-data.frame(A=c(1,3),B=c('a','c'),C=c(9,9),D=rep(8,2));df2
  A B C D
1 1 a 9 8
2 3 c 9 8

# 定义匹配条件列 
> keys=c("A","B")

# 定义替换的列
> vals=c("C","D")

# 数据替换
> replace_df(df1,df2,keys,vals)
  A B C D
1 1 a 9 8
2 2 b 4 2
3 3 c 9 8
4 4 d 4 4

其实不管R语言中,各种内置的功能函数有多少,自己做在数据处理的时候,都要自己构建很多DIY的函数。

3.3 长表和宽表变换

长宽其实是一种类对于标准表格形状的描述,长表变宽表,是把一个行数很多的表,让其行数减少,列数增加,宽表变长表,是把一个表格列数减少行数增加。

长表变宽表,指定program列不动,用fun列的每一行,生成新的列,再用time列的每个值进行填充。


# 创建数据框
> df<-data.frame(
+     program=rep(c('R','Java','PHP','Python'),3),
+     fun=rep(c('fun1','fun2','fun3'),each = 4),
+     time=round(rnorm(12,10,3),2)
+ );df
   program  fun  time
1        R fun1 10.91
2     Java fun1  6.59
3      PHP fun1  9.26
4   Python fun1 11.17
5        R fun2 12.27
6     Java fun2  6.61
7      PHP fun2  7.28
8   Python fun2  9.39
9        R fun3  9.22
10    Java fun3 11.20
11     PHP fun3 13.40
12  Python fun3 10.67

# 加载reshape2库
> library(reshape2)

# 长表变宽表
> wide <- reshape(df,v.names="time",idvar="program",timevar="fun",direction = "wide");wide
  program time.fun1 time.fun2 time.fun3
1       R     10.91     12.27      9.22
2    Java      6.59      6.61     11.20
3     PHP      9.26      7.28     13.40
4  Python     11.17      9.39     10.67

接下来,进行反正操作,把宽表再转换为长表,还是使用reshape()函数。


# 宽表变为长表
> reshape(wide, direction = "long")
            program  fun  time
R.fun1            R fun1  8.31
Java.fun1      Java fun1  8.45
PHP.fun1        PHP fun1 10.49
Python.fun1  Python fun1 10.45
R.fun2            R fun2  8.72
Java.fun2      Java fun2  4.15
PHP.fun2        PHP fun2 11.47
Python.fun2  Python fun2 13.25
R.fun3            R fun3 10.10
Java.fun3      Java fun3 13.86
PHP.fun3        PHP fun3  9.96
Python.fun3  Python fun3 14.64

我们在宽表转换为长表时,可以指定想转换部分列,而不是所有列,这样就需要增加一个参数进行控制。比如,只变换time.fun2,time.fun3列到长表,而不变换time.fun1列。


> reshape(wide, direction = "long", varying =3:4)
       program time.fun1  time id
1.fun2       R      8.31  8.72  1
2.fun2    Java      8.45  4.15  2
3.fun2     PHP     10.49 11.47  3
4.fun2  Python     10.45 13.25  4
1.fun3       R      8.31 10.10  1
2.fun3    Java      8.45 13.86  2
3.fun3     PHP     10.49  9.96  3
4.fun3  Python     10.45 14.64  4

这样子的转换变形,是非常有利于我们从多角度来看数据的。

3.4 融化

融化,用于把以列进行分组的数据,转型为按行存储,对应数据表设计的概念为,属性表设计。

我们设计一下标准的二维表结构,然后按属性表的方式进行转换。


# 构建数据集
> df<-data.frame(
+   id=1:10,
+   x1=rnorm(10),
+   x2=runif(10,0,1)
+ );df
   id          x1          x2
1   1  1.78375335 0.639933473
2   2  0.26424700 0.250290845
3   3 -1.83138689 0.963861236
4   4 -1.77029220 0.451004465
5   5 -0.92149552 0.322621217
6   6  0.88499153 0.697954226
7   7  0.68905343 0.002045145
8   8  1.35269693 0.765777220
9   9  0.03673819 0.908817646
10 10  0.49682503 0.413977373

# 融合,以id列为固定列
> melt(df, id="id")
   id variable        value
1   1       x1  1.783753346
2   2       x1  0.264247003
3   3       x1 -1.831386887
4   4       x1 -1.770292202
5   5       x1 -0.921495517
6   6       x1  0.884991529
7   7       x1  0.689053430
8   8       x1  1.352696934
9   9       x1  0.036738187
10 10       x1  0.496825031
11  1       x2  0.639933473
12  2       x2  0.250290845
13  3       x2  0.963861236
14  4       x2  0.451004465
15  5       x2  0.322621217
16  6       x2  0.697954226
17  7       x2  0.002045145
18  8       x2  0.765777220
19  9       x2  0.908817646
20 10       x2  0.413977373

这个操作其实在使用ggplot2包画图时,会被经常用到。因为ggplot2做可视化时画多条曲线时,要求的输入的数据格式必须时属性表的格式。

3.5 周期分割

周期分割,是基于时间序列类型数据的处理。比如黄金的交易,你可以用1天为周期来观察,也可以用的1小时为周期来观察,也可以用1分钟为周期来看。

下面我们尝试先生成交易数据,再对交易数据进行周期的分割。本例仅为周期分割操作的示范,数据为随机生成的,请不要对数据的真实性较真。


# 加载xts包
> library(xts)

# 定义生成每日交易数据函数
> newTick<-function(date='2017-01-01',n=30){
+   newDate<-paste(date,'10:00:00')
+   xts(round(rnorm(n,10,2),2),order.by=as.POSIXct(newDate)+seq(0,(n-1)*60,60))
+ }

假设我们要生成1年的交易数据,先产生1年的日期向量,然后循环生成每日的数据。


# 设置交易日期
> dates<-as.Date("2017-01-01")+seq(0,360,1)
> head(dates)
[1] "2017-01-01" "2017-01-02" "2017-01-03" "2017-01-04" "2017-01-05" "2017-01-06"

# 生成交易数据
> xs<-lapply(dates,function(date){
+   newTick(date)
+ })

# 查看数据静态结构
> str(head(xs,2))
List of 2
 $ :An ‘xts’ object on 2017-01-01 10:00:00/2017-01-01 10:29:00 containing:
  Data: num [1:30, 1] 9.98 9.2 10.21 9.08 7.82 ...
  Indexed by objects of class: [POSIXct,POSIXt] TZ: 
  xts Attributes:  
 NULL
 $ :An ‘xts’ object on 2017-01-02 10:00:00/2017-01-02 10:29:00 containing:
  Data: num [1:30, 1] 9.41 13.15 6.07 10.12 10.37 ...
  Indexed by objects of class: [POSIXct,POSIXt] TZ: 
  xts Attributes:  
 NULL

# 转型为xts类型 
> df<-do.call(rbind.data.frame, xs)
> xdf<-as.xts(df)
> head(xdf)
                       V1
2017-01-01 10:00:00  9.98
2017-01-01 10:01:00  9.20
2017-01-01 10:02:00 10.21
2017-01-01 10:03:00  9.08
2017-01-01 10:04:00  7.82
2017-01-01 10:05:00 10.47

现在有了数据,那么我们可以对数据日期,按周期的分割了,从而生成开盘价、最高价、最低价、收盘价。这里一样会用到xts包的函数。关于xts类型的详细介绍,请参考文章 可扩展的时间序列xts


# 按日进行分割,对应高开低收的价格
> d1<-to.period(xdf,period='days');head(d1)
                    xdf.Open xdf.High xdf.Low xdf.Close
2017-01-01 10:29:00     9.98    13.74    5.35     13.34
2017-01-02 10:29:00     9.41    13.54    6.07      9.76
2017-01-03 10:29:00    12.11    13.91    7.16     10.75
2017-01-04 10:29:00    10.43    14.02    6.31     12.10
2017-01-05 10:29:00    11.51    13.97    6.67     13.97
2017-01-06 10:29:00    10.57    12.81    4.30      5.16

# 按月进行分割
> m1<-to.period(xdf,period='months');m1
                    xdf.Open xdf.High xdf.Low xdf.Close
2017-01-31 10:29:00     9.98    16.40    3.85     10.14
2017-02-28 10:29:00     8.25    16.82    4.17     11.76
2017-03-31 10:29:00    10.55    15.54    2.77      9.61
2017-04-30 10:29:00     9.40    16.13    3.84     11.77
2017-05-31 10:29:00    13.79    16.74    3.97     10.25
2017-06-30 10:29:00     9.29    16.15    4.38      7.92
2017-07-31 10:29:00     5.39    16.09    4.55      9.88
2017-08-31 10:29:00     5.76    16.34    3.27     10.86
2017-09-30 10:29:00     9.56    16.40    3.58     10.09
2017-10-31 10:29:00     8.64    15.50    3.23     10.26
2017-11-30 10:29:00     9.20    15.38    3.00     10.92
2017-12-27 10:29:00     6.99    16.22    3.87      8.87

# 按7日进行分割
> d7<-to.period(xdf,period='days',k=7);head(d7)
                    xdf.Open xdf.High xdf.Low xdf.Close
2017-01-07 10:29:00     9.98    15.54    4.30     10.42
2017-01-14 10:29:00    11.38    14.76    5.74      9.17
2017-01-21 10:29:00     9.57    16.40    3.85     11.91
2017-01-28 10:29:00    10.51    14.08    4.66     10.97
2017-02-04 10:29:00    10.43    16.69    4.53      6.09
2017-02-11 10:29:00    11.98    15.23    5.04     11.57

最后,通过可视化把不同周期的收盘价,画到一个图中。


> plot(d1$xdf.Close)
> lines(d7$xdf.Close,col='red',lwd=2)
> lines(m1$xdf.Close,col='blue',lwd=2)

从图中,可以看出切换为不同的周期,看到的形状是完全不一样的。黑色线表示以日为周期的,红色线表示以7日为周期的,蓝色线表示以月为周期的。

从本文的介绍来看,要做好数据处理是相当不容易的。你要知道数据是什么样的,业务逻辑是什么,怎么写程序以及数据变形,最后怎么进行BI展示,表达出正确的分析维度。试试R语言,忘掉程序员的思维,换成数据的思维,也许繁琐的数据处理工作会让你开心起来。

本文所介绍的数据处理的方法,及个性化的功能函数,我已经发布为一个github的开源项目,项目地址为:https://github.com/bsspirit/RTransform 欢迎大家试用,共同完善。

转载请注明出处:
http://blog.fens.me/r-transform/

打赏作者