• Posts tagged "xts"

Blog Archives

用R语言把数据玩出花样

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹, 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-transform/

前言

作为数据分析师,每天都有大量的数据需要处理,我们会根据业务的要求做各种复杂的报表,包括了分组、排序、过滤、转置、差分、填充、移动、合并、分裂、分布、去重、找重、填充 等等的操作。

有时为了计算一个业务指标,你的SQL怎么写都不会少于10行时,另外你可能也会抱怨Excel功能不够强大,这个时候R语言绝对是不二的选择了。用R语言可以高效地、优雅地解决数据处理的问题,让R来帮你打开面向数据的思维模式。

目录

  1. 为什么要用R语言做数据处理?
  2. 数据处理基础
  3. 个性化的数据变换需求

1. 为什么要用R语言做数据处理?

R语言是非常适合做数据处理的编程语言,因为R语言的设计理念,就是面向数据的,为了解决数据问题。读完本文,相信你就能明白,什么是面向数据的设计了。

一个BI工程师每天的任务,都是非常繁琐的数据处理,如果用Java来做简直就是折磨,但是换成R语言来做,你会找到乐趣的。

当接到一个数据处理的任务后,我们可以把任务拆解为很多小的操作,包括了分组、排序、过滤、转置、差分、填充、移动、合并、分裂、分布、去重、找重等等的操作。对于实际应用的复杂的操作来说,就是把这些小的零碎的操作,拼装起来就好了。

在开始之前,我们要先了解一下R语言支持的数据类型,以及这些常用类型的特点。对于BI的数据处理的工作来说,可能有4种类型是最常用的,分别是向量、矩阵、数据框、时间序列。

  • 向量 Vector : c()
  • 矩阵 Matrix: matrix()
  • 数据框 DataFrame: data.frame()
  • 时间序列 XTS: xts()

我主要是用R语言来做量化投资,很多的时候,都是和时间序列类型数据打交道,所以我把时间序列,也定义为R语言最常用的数据处理的类型。时间序列类型,使用的是第三方包xts中定义的类型。

2. 数据处理基础

本机的系统环境:

  • Win10 64bit
  • R: version 3.2.3 64bit

2.1 创建一个数据集

创建一个向量数据集。


> x<-1:20;x
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

创建一个矩阵数据集。


> m<-matrix(1:40,ncol=5);m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    9   17   25   33
[2,]    2   10   18   26   34
[3,]    3   11   19   27   35
[4,]    4   12   20   28   36
[5,]    5   13   21   29   37
[6,]    6   14   22   30   38
[7,]    7   15   23   31   39
[8,]    8   16   24   32   40

创建一个数据框数据集。


> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b          c
1 1 A  1.1519118
2 2 A  0.9921604
3 3 B -0.4295131
4 4 B  1.2383041
5 5 A -0.2793463

创建一个时间序列数据集,时间序列使用的第三方的xts类型。关于xts类型的详细介绍,请参考文章 可扩展的时间序列xts。


> library(xts)
> xts(1:10,order.by=as.Date('2017-01-01')+1:10)
           [,1]
2017-01-02    1
2017-01-03    2
2017-01-04    3
2017-01-05    4
2017-01-06    5
2017-01-07    6
2017-01-08    7
2017-01-09    8
2017-01-10    9
2017-01-11   10

2.2 查看数据概况

通常进行数据分析的第一步是,查看一下数据的概况信息,在R语言里可以使用summary()函数来完成。


# 查看矩阵数据集的概况
> m<-matrix(1:40,ncol=5)
> summary(m)
       V1             V2              V3              V4              V5       
 Min.   :1.00   Min.   : 9.00   Min.   :17.00   Min.   :25.00   Min.   :33.00  
 1st Qu.:2.75   1st Qu.:10.75   1st Qu.:18.75   1st Qu.:26.75   1st Qu.:34.75  
 Median :4.50   Median :12.50   Median :20.50   Median :28.50   Median :36.50  
 Mean   :4.50   Mean   :12.50   Mean   :20.50   Mean   :28.50   Mean   :36.50  
 3rd Qu.:6.25   3rd Qu.:14.25   3rd Qu.:22.25   3rd Qu.:30.25   3rd Qu.:38.25  
 Max.   :8.00   Max.   :16.00   Max.   :24.00   Max.   :32.00   Max.   :40.00  

# 查看数据框数据集的概况信息
> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5))
> summary(df)
       a     b           c          
 Min.   :1   A:3   Min.   :-1.5638  
 1st Qu.:2   B:2   1st Qu.:-1.0656  
 Median :3         Median :-0.2273  
 Mean   :3         Mean   :-0.1736  
 3rd Qu.:4         3rd Qu.: 0.8320  
 Max.   :5         Max.   : 1.1565  

通过查看概况,可以帮助我们简单了解数据的一些统计特征。

2.3 数据合并

我们经常需要对于数据集,进行合并操作,让数据集满足处理的需求。对于不同类型的数据集,有不同的处理方法。

向量类型


> x<-1:5
> y<-11:15
> c(x,y)
 [1]  1  2  3  4  5 11 12 13 14 15

数据框类型的合并操作。


> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b          c
1 1 A  1.1519118
2 2 A  0.9921604
3 3 B -0.4295131
4 4 B  1.2383041
5 5 A -0.2793463

# 合并新行
> rbind(df,c(11,'A',222))
   a b                  c
1  1 A    1.1519117540872
2  2 A  0.992160365445798
3  3 B -0.429513109491881
4  4 B   1.23830410085338
5  5 A -0.279346281854269
6 11 A                222

# 合并新列
> cbind(df,x=LETTERS[1:5])
  a b          c x
1 1 A  1.1519118 A
2 2 A  0.9921604 B
3 3 B -0.4295131 C
4 4 B  1.2383041 D
5 5 A -0.2793463 E

# 合并新列
> merge(df,LETTERS[3:5])
   a b          c y
1  1 A  1.1519118 C
2  2 A  0.9921604 C
3  3 B -0.4295131 C
4  4 B  1.2383041 C
5  5 A -0.2793463 C
6  1 A  1.1519118 D
7  2 A  0.9921604 D
8  3 B -0.4295131 D
9  4 B  1.2383041 D
10 5 A -0.2793463 D
11 1 A  1.1519118 E
12 2 A  0.9921604 E
13 3 B -0.4295131 E
14 4 B  1.2383041 E
15 5 A -0.2793463 E

2.4 累计计算

累计计算,是很常用的一种计算方法,就是把每个数值型的数据,累计求和或累计求积,从而反应数据的增长的一种特征。


# 向量x
> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10

# 累计求和
> cum_sum<-cumsum(x)

# 累计求积
> cum_prod<-cumprod(x)

# 拼接成data.frame
> data.frame(x,cum_sum,cum_prod)
    x cum_sum cum_prod
1   1       1        1
2   2       3        2
3   3       6        6
4   4      10       24
5   5      15      120
6   6      21      720
7   7      28     5040
8   8      36    40320
9   9      45   362880
10 10      55  3628800

我们通常用累计计算,记录中间每一步的过程,看到的数据处理过程的特征。

2.5 差分计算

差分计算,是用向量的后一项减去前一项,所获得的差值,差分的结果反映了离散量之间的一种变化。


> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10

# 计算1阶差分
> diff(x)
[1] 1 1 1 1 1 1 1 1 1

# 计算2阶差分
> diff(x,2)
[1] 2 2 2 2 2 2 2 2

# 计算2阶差分,迭代2次
> diff(x,2,2)
[1] 0 0 0 0 0 0

下面做一个稍微复杂一点的例子,通过差分来发现数据的规律。


# 对向量2次累积求和
> x <- cumsum(cumsum(1:10));x
 [1]   1   4  10  20  35  56  84 120 165 220

# 计算2阶差分
> diff(x, lag = 2)
[1]   9  16  25  36  49  64  81 100

# 计算1阶差分,迭代2次
> diff(x, differences = 2)
[1]  3  4  5  6  7  8  9 10

# 同上
> diff(diff(x))
[1]  3  4  5  6  7  8  9 10

差分其实是很常见数据的操作,但这种操作是SQL很难表达的,所以可能会被大家所忽视。

2.6 分组计算

分组是SQL中,支持的一种数据变换的操作,对应于group by的语法。

比如,我们写一个例子。创建一个数据框有a,b,c的3列,其中a,c列为数值型,b列为字符串,我们以b列分组,求出a列与c的均值。


# 创建数据框
> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b           c
1 1 A  1.28505418
2 2 A -0.04687263
3 3 B  0.25383533
4 4 B  0.70145787
5 5 A -0.11470372

# 执行分组操作
> aggregate(. ~ b, data = df, mean)
  b        a         c
1 A 2.666667 0.3744926
2 B 3.500000 0.4776466

同样的数据集,以b列分组,对a列求和,对c列求均值。当对不同列,进行不同的操作时,我们同时也需要换其他函数来处理。


# 加载plyr库
> library(plyr)

# 执行分组操作
> ddply(df,.(b),summarise,
+       sum_a=sum(a),
+       mean_c=mean(c))
  b sum_a      mean_c
1 A     8 -0.05514761
2 B     7  0.82301276

生成的结果,就是按b列进行分组后,a列求和,c列求均值。

2.7 分裂计算

分裂计算,是把一个向量按照一列规则,拆分成多个向量的操作。

如果你想把1:10的向量,按照单双数,拆分成2个向量。


> split(1:10, 1:2)
$`1`
[1] 1 3 5 7 9

$`2`
[1]  2  4  6  8 10

另外,可以用因子类型来控制分裂。分成2步操作,第一步先分成与数据集同样长度的因子,第二步进行分裂,可以把一个大的向量拆分成多个小的向量。


# 生成因子规则
> n <- 3; size <- 5
> fat <- factor(round(n * runif(n * size)));fat
 [1] 2 3 2 1 1 0 0 2 0 1 2 3 1 1 1
Levels: 0 1 2 3

# 生成数据向量
> x <- rnorm(n * size);x
 [1]  0.68973936  0.02800216 -0.74327321  0.18879230 -1.80495863  1.46555486  0.15325334  2.17261167  0.47550953
[10] -0.70994643  0.61072635 -0.93409763 -1.25363340  0.29144624 -0.44329187

# 对向量以因子的规则进行拆分
> split(x, fat)
$`0`
[1] 1.4655549 0.1532533 0.4755095

$`1`
[1]  0.1887923 -1.8049586 -0.7099464 -1.2536334  0.2914462 -0.4432919

$`2`
[1]  0.6897394 -0.7432732  2.1726117  0.6107264

$`3`
[1]  0.02800216 -0.93409763

这种操作可以非常有效地,对数据集进行分类整理,比if..else的操作,有本质上的提升。

2.8 排序

排序是所有数据操作中,最常见一种需求了。在R语言中,你可以很方便的使用排序的功能,并不用考虑时间复杂度与空间复杂度的问题,除非你自己非要用for循环来实现。

对向量进行排序。


# 生成一个乱序的向量
> x<-sample(1:10);x
 [1]  6  2  5  1  9 10  8  3  7  4

# 对向量排序 
> x[order(x)]
 [1]  1  2  3  4  5  6  7  8  9 10

以数据框某一列进行排序。


> df<-data.frame(a=1:5,b=c('A','A','B','B','A'),c=rnorm(5));df
  a b          c
1 1 A  1.1780870
2 2 A -1.5235668
3 3 B  0.5939462
4 4 B  0.3329504
5 5 A  1.0630998

# 自定义排序函数 
> order_df<-function(df,col,decreasing=FALSE){
+     df[order(df[,c(col)],decreasing=decreasing),]
+ }

# 以c列倒序排序
> order_df(df,'c',decreasing=TRUE)
  a b          c
1 1 A  1.1780870
5 5 A  1.0630998
3 3 B  0.5939462
4 4 B  0.3329504
2 2 A -1.5235668

排序的操作,大多都是基于索引来完成的,用order()函数来生成索引,再匹配的数据的数值上面。

2.9 去重与找重

去重,是把向量中重复的元素过滤掉。找重,是把向量中重复的元素找出来。


> x<-c(3:6,5:8);x
[1] 3 4 5 6 5 6 7 8

# 去掉重复元素
> unique(x)
[1] 3 4 5 6 7 8

# 找到重复元素,索引位置
> duplicated(x)
[1] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE

# 找到重复元素
> x[duplicated(x)]
[1] 5 6

2.10 转置

转置是一个数学名词,把行和列进行互换,一般用于对矩阵的操作。


# 创建一个3行5列的矩阵
> m<-matrix(1:15,ncol=5);m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    4    7   10   13
[2,]    2    5    8   11   14
[3,]    3    6    9   12   15

# 转置后,变成5行3列的矩阵
> t(m)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
[5,]   13   14   15

2.11 过滤

过滤,是对数据集按照某种规则进行筛选,去掉不符合条件的数据,保留符合条件的数据。对于NA值的操作,主要都集中在了过滤操作和填充操作中,因此就不在单独介绍NA值的处理了。


# 生成数据框
> df<-data.frame(a=c(1,NA,NA,2,NA),
+     b=c('B','A','B','B',NA),
+     c=c(rnorm(2),NA,NA,NA));df
   a    b          c
1  1    B -0.3041839
2 NA    A  0.3700188
3 NA    B         NA
4  2    B         NA
5 NA <NA>         NA

# 过滤有NA行的数据
> na.omit(df)
  a b          c
1 1 B -0.3041839

# 过滤,保留b列值为B的数据
> df[which(df$b=='B'),]
   a b          c
1  1 B -0.3041839
3 NA B         NA
4  2 B         NA

过滤,类似与SQL语句中的 WHERE 条件语句,如果你用100个以上的过滤条件,那么你的程序就会比较复杂了,最好想办法用一些巧妙的函数或者设计模式,来替换这些过滤条件。

2.12 填充

填充,是一个比较有意思的操作,你的原始数据有可能会有缺失值NA,在做各种计算时,就会出现有问题。一种方法是,你把NA值都去掉;另外一种方法是,你把NA值进行填充后再计算。那么在填充值时,就有一些讲究了。

把NA值进行填充。


# 生成数据框
> df<-data.frame(a=c(1,NA,NA,2,NA),
+      b=c('B','A','B','B',NA),
+      c=c(rnorm(2),NA,NA,NA));df
   a    b          c
1  1    B  0.2670988
2 NA    A -0.5425200
3 NA    B         NA
4  2    B         NA
5 NA <NA>         NA

# 把数据框a列的NA,用9进行填充
> na.fill(df$a,9)
[1] 1 9 9 2 9

# 把数据框中的NA,用1进行填充
> na.fill(df,1)
     a      b      c           
[1,] " 1"   "B"    " 0.2670988"
[2,] "TRUE" "A"    "-0.5425200"
[3,] "TRUE" "B"    "TRUE"      
[4,] " 2"   "B"    "TRUE"      
[5,] "TRUE" "TRUE" "TRUE"     

填充时,有时并不是用某个固定的值,而是需要基于某种规则去填充。


# 生成一个zoo类型的数据
> z <- zoo(c(2, NA, 1, 4, 5, 2), c(1, 3, 4, 6, 7, 8));z
 1  3  4  6  7  8 
 2 NA  1  4  5  2 

# 对NA进行线性插值
> na.approx(z) 
       1        3        4        6        7        8 
2.000000 1.333333 1.000000 4.000000 5.000000 2.000000 

# 对NA进行线性插值
> na.approx(z, 1:6)
  1   3   4   6   7   8 
2.0 1.5 1.0 4.0 5.0 2.0 

# 对NA进行样条插值
> na.spline(z)
        1         3         4         6         7         8 
2.0000000 0.1535948 1.0000000 4.0000000 5.0000000 2.0000000 

另外,我们可以针对NA的位置进行填充,比如用前值来填充或后值来填充。


> df
   a    b          c
1  1    B  0.2670988
2 NA    A -0.5425200
3 NA    B         NA
4  2    B         NA
5 NA <NA>         NA

# 用当前列中,NA的前值来填充
> na.locf(df)
   a b          c
1  1 B  0.2670988
2  1 A -0.5425200
3  1 B -0.5425200
4  2 B -0.5425200
5  2 B -0.5425200

# 用当前列中,NA的后值来填充
> na.locf(df,fromLast=TRUE)
   a b          c
1  1 B  0.2670988
2  2 A -0.5425200
3  2 B       <NA>
4  2 B       <NA>

2.13 计数

计数,是统计同一个值出现的次数。


# 生成30个随机数的向量
> set.seed(0)
> x<-round(rnorm(30)*5);x
 [1]  6 -2  7  6  2 -8 -5 -1  0 12  4 -4 -6 -1 -1 -2  1 -4  2 -6 -1  2  1  4  0  3  5 -3 -6  0

# 统计每个值出现的次数
> table(x)
x
-8 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7 12 
 1  3  1  2  1  2  4  3  2  3  1  2  1  2  1  1 

用直方图画出。


> hist(x,xlim = c(-10,13),breaks=20)

2.14 统计分布

统计分布,是用来判断数据是否是满足某种统计学分布,如果能够验证了,那么我们就可以用到这种分布的特性来理解我们的数据集的情况了。常见的连续型的统计分布有9种,其中最常用的就是正态分布的假设。关于统计分布的详细介绍,请参考文章 常用连续型分布介绍及R语言实现

  • runif() :均匀分布
  • rnorm() :正态分布
  • rexp() :指数分布
  • rgamma() :伽马分布
  • rweibull() :韦伯分布
  • rchisq() :卡方分布
  • rf() :F分布
  • rt() :T分布
  • rbeta() :贝塔分布

统计模型定义的回归模型,就是基于正态分布的做的数据假设,如果残差满足正态分布,模型的指标再漂亮都是假的。如果你想进一步了解回归模型,请参考文章R语言解读一元线性回归模型

下面用正态分布,来举例说明一下。假设我们有一组数据,是人的身高信息,我们知道平均身高是170cm,然后我们算一下,这组身高数据是否满足正态分布。


# 生成身高数据
> set.seed(1)
> x<-round(rnorm(100,170,10))
> head(x,20)
 [1] 164 172 162 186 173 162 175 177 176 167 185 174 164 148 181 170 170 179 178 176

# 画出散点图 
> plot(x)

通过散点图来观察,发现数据是没有任何规律。接下来,我们进行正态分布的检验,Shapiro-Wilk进行正态分布检验。


> shapiro.test(x)
	Shapiro-Wilk normality test
data:  x
W = 0.99409, p-value = 0.9444

该检验原假设为H0:数据集符合正态分布,统计量W为。统计量W的最大值是1,越接近1,表示样本与正态分布越匹配。p值,如果p-value小于显著性水平α(0.05),则拒绝H0。检验结论: W接近1,p-value>0.05,不能拒绝原假设,所以数据集S符合正态分布!

同时,我们也可以用QQ图,来做正态分布的检验。


> qqnorm(x)
> qqline(x,col='red')

图中,散点均匀的分布在对角线,则说明这组数据符合正态分布。

为了,更直观地对正态分布的数据进行观察,我们可以用上文中计数操作时,使用的直方图进行观察。


> hist(x,breaks=10)

通过计数的方法,发现数据形状如钟型,中间高两边低,中间部分的数量占了95%,这就是正态的特征。当判断出,数据是符合正态分布后,那么才具备了可以使用一些的模型的基础。

2.15 数值分段

数值分段,就是把一个连续型的数值型数据,按区间分割为因子类型的离散型数据。


> x<-1:10;x
 [1]  1  2  3  4  5  6  7  8  9 10

# 把向量转换为3段因子,分别列出每个值对应因子
> cut(x, 3)
 [1] (0.991,4] (0.991,4] (0.991,4] (0.991,4] (4,7]     (4,7]     (4,7]     (7,10]    (7,10]    (7,10]   
Levels: (0.991,4] (4,7] (7,10]

# 对因子保留2位精度,并支持排序
> cut(x, 3, dig.lab = 2, ordered = TRUE)
 [1] (0.99,4] (0.99,4] (0.99,4] (0.99,4] (4,7]    (4,7]    (4,7]    (7,10]   (7,10]   (7,10]  
Levels: (0.99,4] < (4,7] < (7,10]

2.16 集合操作

集合操作,是对2个向量的操作,处理2个向量之间的数值的关系,找到包含关系、取交集、并集、差集等。


# 定义2个向量x,y
> x<-c(3:8,NA);x
[1]  3  4  5  6  7  8 NA
> y<-c(NA,6:10,NA);y
[1] NA  6  7  8  9 10 NA

# 判断x与y重复的元素的位置
> is.element(x, y)
[1] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE

# 判断y与x重复的元素的位置
> is.element(y, x)
[1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE

# 取并集
> union(x, y)
[1]  3  4  5  6  7  8 NA  9 10

# 取交集
> intersect(x, y)
[1]  6  7  8 NA

# 取x有,y没有元素
> setdiff(x, y)
[1] 3 4 5

# 取y有,x没有元素
> setdiff(y, x)
[1]  9 10

# 判断2个向量是否相等
> setequal(x, y)
[1] FALSE

2.17 移动窗口

移动窗口,是用来按时间周期观察数据的一种方法。移动平均,就是一种移动窗口的最常见的应用了。

在R语言的的TTR包中,支持多种的移动窗口的计算。

  • runMean(x) :移动均值
  • runSum(x) :移动求和
  • runSD(x) :移动标准差
  • runVar(x) :移动方差
  • runCor(x,y) :移动相关系数
  • runCov(x,y) :移动协方差
  • runMax(x) :移动最大值
  • runMin(x) :移动最小值
  • runMedian(x):移动中位数

下面我们用移动平均来举例说明一下,移动平均在股票交易使用的非常普遍,是最基础的趋势判断的根踪指标了。


# 生成50个随机数
> set.seed(0)
> x<-round(rnorm(50)*10);head(x,10)
 [1]  13  -3  13  13   4 -15  -9  -3   0  24

# 加载TTR包
> library(TTR)

# 计算周期为3的移动平均值
> m3<-SMA(x,3);head(m3,10)
 [1]         NA         NA  7.6666667  7.6666667 10.0000000  0.6666667 -6.6666667 -9.0000000 -4.0000000
[10]  7.0000000

# 计算周期为5的移动平均值
> m5<-SMA(x,5);head(m5,10)
 [1]   NA   NA   NA   NA  8.0  2.4  1.2 -2.0 -4.6 -0.6

当计算周期为3的移动平均值时,结果的前2个值是NA,计算的算法是


(第一个值 + 第二个值 + 第三个值)  /3 = 第三个值的移动平均值
(13      +    -3   +     13)    /3 = 7.6666667

画出图形


> plot(x,type='l')
> lines(m3,col='blue')
> lines(m5,col='red')

图中黑色线是原始数据,蓝色线是周期为3的移动平均值,红色线是周期为5的移动平均值。这3个线中,周期越大的越平滑,红色线波动是最小的,趋势性是越明显的。如果你想更深入的了解移动平均线在股票中的使用情况,请参考文章二条均线打天下

2.18 时间对齐

时间对齐,是在处理时间序列类型时常用到的操作。我们在做金融量化分析时,经常遇到时间不齐的情况,比如某支股票交易很活跃,每一秒都有交易,而其他不太活跃的股票,可能1分钟才有一笔交易,当我们要同时分析这2只股票的时候,就需要把他们的交易时间进行对齐。


# 生成数据,每秒一个值
> a<-as.POSIXct("2017-01-01 10:00:00")+0:300

# 生成数据,每59秒一个值
> b<-as.POSIXct("2017-01-01 10:00")+seq(1,300,59)

# 打印a
> head(a,10)
 [1] "2017-01-01 10:00:00 CST" "2017-01-01 10:00:01 CST" "2017-01-01 10:00:02 CST" "2017-01-01 10:00:03 CST"
 [5] "2017-01-01 10:00:04 CST" "2017-01-01 10:00:05 CST" "2017-01-01 10:00:06 CST" "2017-01-01 10:00:07 CST"
 [9] "2017-01-01 10:00:08 CST" "2017-01-01 10:00:09 CST"

# 打印b 
> head(b,10)
[1] "2017-01-01 10:00:01 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:59 CST" "2017-01-01 10:02:58 CST"
[5] "2017-01-01 10:03:57 CST" "2017-01-01 10:04:56 CST"

按分钟进行对齐,把时间都对齐到分钟线上。


# 按分钟对齐
> a1<-align.time(a, 1*60)
> b1<-align.time(b, 1*60)

# 查看对齐后的结果
> head(a1,10)
 [1] "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST"
 [5] "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST"
 [9] "2017-01-01 10:01:00 CST" "2017-01-01 10:01:00 CST"

> head(b1,10)
[1] "2017-01-01 10:01:00 CST" "2017-01-01 10:02:00 CST" "2017-01-01 10:02:00 CST" "2017-01-01 10:03:00 CST"
[5] "2017-01-01 10:04:00 CST" "2017-01-01 10:05:00 CST"

由于a1数据集,每分钟有多条数据,取每分钟的最后一条代表这分钟就行。


> a1[endpoints(a1,'minutes')]
[1] "2017-01-01 10:01:00 CST" "2017-01-01 10:02:00 CST" "2017-01-01 10:03:00 CST" "2017-01-01 10:04:00 CST"
[5] "2017-01-01 10:05:00 CST" "2017-01-01 10:06:00 CST"

这样子就完成了时间对齐,把不同时间的数据放到都一个维度中了。

3. 个性化的数据变换需求

我们上面已经介绍了,很多种的R语言数据处理的方法,大多都是基于R语言内置的函数或第三方包来完成的。在实际的工作中,实际还有再多的操作,完全是各性化的。

3.1 过滤数据框中,列数据全部为空的列

空值,通常都会给我们做数值计算,带来很多麻烦。有时候一列的数据都是空时,我们需要先把这一个过滤掉,再进行数据处理。

用R语言程序进行实现


# 判断哪列的值都是NA
na_col_del_df<-function(df){
  df[,which(!apply(df,2,function(x) all(is.na(x))))]  
} 

# 生成一个数据集
> df<-data.frame(a=c(1,NA,2,4),b=rep(NA,4),c=1:4);df
   a  b c
1  1 NA 1
2 NA NA 2
3  2 NA 3
4  4 NA 4

# 保留非NA的列
> na_col_del_df(df)
   a c
1  1 1
2 NA 2
3  2 3
4  4 4

3.2 替换数据框中某个区域的数据

我们想替换数据框中某个区域的数据,那么应该怎么做呢?

找到第一个数据框中,与第二个数据框中匹配的行的值作为条件,然后替换这一行的其他指定列的值。


> replace_df<-function(df1,df2,keys,vals){
+     row1<-which(apply(mapply(match,df1[,keys],df2[,keys])>0,1,all))
+     row2<-which(apply(mapply(match,df2[,keys],df1[,keys])>0,1,all))
+     df1[row1,vals]<-df2[row2,vals]
+     return(df1)
+ }

# 第一个数据框 
> df1<-data.frame(A=c(1,2,3,4),B=c('a','b','c','d'),C=c(0,4,0,4),D=1:4);df1
  A B C D
1 1 a 0 1
2 2 b 4 2
3 3 c 0 3
4 4 d 4 4

# 第二个数据框 
> df2<-data.frame(A=c(1,3),B=c('a','c'),C=c(9,9),D=rep(8,2));df2
  A B C D
1 1 a 9 8
2 3 c 9 8

# 定义匹配条件列 
> keys=c("A","B")

# 定义替换的列
> vals=c("C","D")

# 数据替换
> replace_df(df1,df2,keys,vals)
  A B C D
1 1 a 9 8
2 2 b 4 2
3 3 c 9 8
4 4 d 4 4

其实不管R语言中,各种内置的功能函数有多少,自己做在数据处理的时候,都要自己构建很多DIY的函数。

3.3 长表和宽表变换

长宽其实是一种类对于标准表格形状的描述,长表变宽表,是把一个行数很多的表,让其行数减少,列数增加,宽表变长表,是把一个表格列数减少行数增加。

长表变宽表,指定program列不动,用fun列的每一行,生成新的列,再用time列的每个值进行填充。


# 创建数据框
> df<-data.frame(
+     program=rep(c('R','Java','PHP','Python'),3),
+     fun=rep(c('fun1','fun2','fun3'),each = 4),
+     time=round(rnorm(12,10,3),2)
+ );df
   program  fun  time
1        R fun1 15.01
2     Java fun1  7.17
3      PHP fun1 10.84
4   Python fun1  8.96
5        R fun2 10.30
6     Java fun2  9.45
7      PHP fun2  8.87
8   Python fun2  8.18
9        R fun3  6.30
10    Java fun3  9.70
11     PHP fun3  8.89
12  Python fun3  5.19

# 加载reshape2库
> library(reshape2)

# 长表变宽表
> wide <- reshape(df,v.names="time",idvar="program",timevar="fun",direction = "wide");wide
  program time.fun1 time.fun2 time.fun3
1       R      8.31      8.72     10.10
2    Java      8.45      4.15     13.86
3     PHP     10.49     11.47      9.96
4  Python     10.45     13.25     14.64

接下来,进行反正操作,把宽表再转换为长表,还是使用reshape()函数。


# 宽表变为长表
> reshape(wide, direction = "long")
            program  fun  time
R.fun1            R fun1  8.31
Java.fun1      Java fun1  8.45
PHP.fun1        PHP fun1 10.49
Python.fun1  Python fun1 10.45
R.fun2            R fun2  8.72
Java.fun2      Java fun2  4.15
PHP.fun2        PHP fun2 11.47
Python.fun2  Python fun2 13.25
R.fun3            R fun3 10.10
Java.fun3      Java fun3 13.86
PHP.fun3        PHP fun3  9.96
Python.fun3  Python fun3 14.64

我们在宽表转换为长表时,可以指定想转换部分列,而不是所有列,这样就需要增加一个参数进行控制。比如,只变换time.fun2,time.fun3列到长表,而不变换time.fun1列。


> reshape(wide, direction = "long", varying =3:4)
       program time.fun1  time id
1.fun2       R      8.31  8.72  1
2.fun2    Java      8.45  4.15  2
3.fun2     PHP     10.49 11.47  3
4.fun2  Python     10.45 13.25  4
1.fun3       R      8.31 10.10  1
2.fun3    Java      8.45 13.86  2
3.fun3     PHP     10.49  9.96  3
4.fun3  Python     10.45 14.64  4

这样子的转换变形,是非常有利于我们从多角度来看数据的。

3.4 融化

融化,用于把以列进行分组的数据,转型为按行存储,对应数据表设计的概念为,属性表设计。

我们设计一下标准的二维表结构,然后按属性表的方式进行转换。


# 构建数据集
> df<-data.frame(
+   id=1:10,
+   x1=rnorm(10),
+   x2=runif(10,0,1)
+ );df
   id          x1          x2
1   1  1.78375335 0.639933473
2   2  0.26424700 0.250290845
3   3 -1.83138689 0.963861236
4   4 -1.77029220 0.451004465
5   5 -0.92149552 0.322621217
6   6  0.88499153 0.697954226
7   7  0.68905343 0.002045145
8   8  1.35269693 0.765777220
9   9  0.03673819 0.908817646
10 10  0.49682503 0.413977373

# 融合,以id列为固定列
> melt(df, id="id")
   id variable        value
1   1       x1  1.783753346
2   2       x1  0.264247003
3   3       x1 -1.831386887
4   4       x1 -1.770292202
5   5       x1 -0.921495517
6   6       x1  0.884991529
7   7       x1  0.689053430
8   8       x1  1.352696934
9   9       x1  0.036738187
10 10       x1  0.496825031
11  1       x2  0.639933473
12  2       x2  0.250290845
13  3       x2  0.963861236
14  4       x2  0.451004465
15  5       x2  0.322621217
16  6       x2  0.697954226
17  7       x2  0.002045145
18  8       x2  0.765777220
19  9       x2  0.908817646
20 10       x2  0.413977373

这个操作其实在使用ggplot2包画图时,会被经常用到。因为ggplot2做可视化时画多条曲线时,要求的输入的数据格式必须时属性表的格式。

3.5 周期分割

周期分割,是基于时间序列类型数据的处理。比如黄金的交易,你可以用1天为周期来观察,也可以用的1小时为周期来观察,也可以用1分钟为周期来看。

下面我们尝试先生成交易数据,再对交易数据进行周期的分割。本例仅为周期分割操作的示范,数据为随机生成的,请不要对数据的真实性较真。


# 加载xts包
> library(xts)

# 定义生成每日交易数据函数
> newTick<-function(date='2017-01-01',n=30){
+   newDate<-paste(date,'10:00:00')
+   xts(round(rnorm(n,10,2),2),order.by=as.POSIXct(newDate)+seq(0,(n-1)*60,60))
+ }

假设我们要生成1年的交易数据,先产生1年的日期向量,然后循环生成每日的数据。


# 设置交易日期
> dates<-as.Date("2017-01-01")+seq(0,360,1)
> head(dates)
[1] "2017-01-01" "2017-01-02" "2017-01-03" "2017-01-04" "2017-01-05" "2017-01-06"

# 生成交易数据
> xs<-lapply(dates,function(date){
+   newTick(date)
+ })

# 查看数据静态结构
> str(head(xs,2))
List of 2
 $ :An ‘xts’ object on 2017-01-01 10:00:00/2017-01-01 10:29:00 containing:
  Data: num [1:30, 1] 9.98 9.2 10.21 9.08 7.82 ...
  Indexed by objects of class: [POSIXct,POSIXt] TZ: 
  xts Attributes:  
 NULL
 $ :An ‘xts’ object on 2017-01-02 10:00:00/2017-01-02 10:29:00 containing:
  Data: num [1:30, 1] 9.41 13.15 6.07 10.12 10.37 ...
  Indexed by objects of class: [POSIXct,POSIXt] TZ: 
  xts Attributes:  
 NULL

# 转型为xts类型 
> df<-do.call(rbind.data.frame, xs)
> xdf<-as.xts(df)
> head(xdf)
                       V1
2017-01-01 10:00:00  9.98
2017-01-01 10:01:00  9.20
2017-01-01 10:02:00 10.21
2017-01-01 10:03:00  9.08
2017-01-01 10:04:00  7.82
2017-01-01 10:05:00 10.47

现在有了数据,那么我们可以对数据日期,按周期的分割了,从而生成开盘价、最高价、最低价、收盘价。这里一样会用到xts包的函数。关于xts类型的详细介绍,请参考文章 可扩展的时间序列xts


# 按日进行分割,对应高开低收的价格
> d1<-to.period(xdf,period='days');head(d1)
                    xdf.Open xdf.High xdf.Low xdf.Close
2017-01-01 10:29:00     9.98    13.74    5.35     13.34
2017-01-02 10:29:00     9.41    13.54    6.07      9.76
2017-01-03 10:29:00    12.11    13.91    7.16     10.75
2017-01-04 10:29:00    10.43    14.02    6.31     12.10
2017-01-05 10:29:00    11.51    13.97    6.67     13.97
2017-01-06 10:29:00    10.57    12.81    4.30      5.16

# 按月进行分割
> m1<-to.period(xdf,period='months');m1
                    xdf.Open xdf.High xdf.Low xdf.Close
2017-01-31 10:29:00     9.98    16.40    3.85     10.14
2017-02-28 10:29:00     8.25    16.82    4.17     11.76
2017-03-31 10:29:00    10.55    15.54    2.77      9.61
2017-04-30 10:29:00     9.40    16.13    3.84     11.77
2017-05-31 10:29:00    13.79    16.74    3.97     10.25
2017-06-30 10:29:00     9.29    16.15    4.38      7.92
2017-07-31 10:29:00     5.39    16.09    4.55      9.88
2017-08-31 10:29:00     5.76    16.34    3.27     10.86
2017-09-30 10:29:00     9.56    16.40    3.58     10.09
2017-10-31 10:29:00     8.64    15.50    3.23     10.26
2017-11-30 10:29:00     9.20    15.38    3.00     10.92
2017-12-27 10:29:00     6.99    16.22    3.87      8.87

# 按7日进行分割
> d7<-to.period(xdf,period='days',k=7);head(d7)
                    xdf.Open xdf.High xdf.Low xdf.Close
2017-01-07 10:29:00     9.98    15.54    4.30     10.42
2017-01-14 10:29:00    11.38    14.76    5.74      9.17
2017-01-21 10:29:00     9.57    16.40    3.85     11.91
2017-01-28 10:29:00    10.51    14.08    4.66     10.97
2017-02-04 10:29:00    10.43    16.69    4.53      6.09
2017-02-11 10:29:00    11.98    15.23    5.04     11.57

最后,通过可视化把不同周期的收盘价,画到一个图中。


> plot(d1$xdf.Close)
> lines(d7$xdf.Close,col='red',lwd=2)
> lines(m1$xdf.Close,col='blue',lwd=2)

从图中,可以看出切换为不同的周期,看到的形状是完全不一样的。黑色线表示以日为周期的,红色线表示以7日为周期的,蓝色线表示以月为周期的。

从本文的介绍来看,要做好数据处理是相当不容易的。你要知道数据是什么样的,业务逻辑是什么,怎么写程序以及数据变形,最后怎么进行BI展示,表达出正确的分析维度。试试R语言,忘掉程序员的思维,换成数据的思维,也许繁琐的数据处理工作会让你开心起来。

本文所介绍的数据处理的方法,及个性化的功能函数,我已经发布为一个github的开源项目,项目地址为:https://github.com/bsspirit/RTransform 欢迎大家试用,共同完善。

转载请注明出处:
http://blog.fens.me/r-transform/

打赏作者

R语言量化投资常用包总结

用IT技术玩金融系列文章,将介绍如何使用IT技术,处理金融大数据。在互联网混迹多年,已经熟练掌握一些IT技术。单纯地在互联网做开发,总觉得使劲的方式不对。要想靠技术养活自己,就要把技术变现。通过“跨界”可以寻找新的机会,创造技术的壁垒。

金融是离钱最近的市场,也是变现的好渠道!今天就开始踏上“用IT技术玩金融”之旅!

关于作者:

  • 张丹(Conan), 程序员Java,R,Nodejs
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-quant-packages/

quant-packages

前言

总是被很多的人问,为什么用R语言做量化投资,R、Python、Matlab比起来哪个更好?其实,答案很简单,你哪个用的熟就用哪个,工具是用来提升效率的,结果才是你会得到的。认准一门语言,坚持把它做好你就会成长。

每个领域,每种编程语言都用推动它前进的人,跟上牛人的脚步,你慢慢地也会变牛。

目录

  1. 为什么用R语言做量化投资?
  2. 常用量化投资工具包

1. 为什么用R语言做量化投资?

R做量化投资到底有哪些优势呢?最主要的一点,就是R语言有很多第三方包的支持。通常编程语言的设计,都是为了解决软件开发和程序实现的问题。但R语言在开始时,就被设计为主要解决数据的问题。量化投资就是对数据进行各种数据处理、数据分析,从而找到数据的规律。所以,有很多从事量化投资的人,把R语言用来构建量化交易的模型,进行回测,风险管理等,最后把研究成果开源并贡献给R语言的社区,为后面的人提供了非常大的帮助。

相比Python来说也有很多的第三方包的支持,这些第三方大部分提供是Web开发,数据爬虫,系统管理,数据库调用,数学计算等,这些都是属于通用的软件需求,而非某个行业的数据需求。当某个Python大神,开始关注量化投资领域,并用Python实现了一套量化的程序库,后面的人就会进入这个领域,只是沿着大神的路线走,等待下一个大神的出现。所以本质上,Python是面向程序设计的语言,而R是面向数据的语言。

R语言在量化投资领域,已经有很多年的积累,很多的算法已经成型。从投资研究到交易分析,再到风险管理,有着完整的体系结构。我们同样可以沿着前人走出来的路,快速学习,快速搭建出量化投资的系统来。对于有IT但背景缺乏金融知识的人来说,有很多的部分知识上手比较困难,同时看不太懂各种统计指标,对学习造成了很大的阻力。这其实是你深入到具体地某个行业后,都会面临的问题。行业知识和数学知识才是最难的,只有突破了,你才能打开认知新领域的方法。

R语言让我们更接近数据,同时提供了各种数学统计的工具,又有大量由第三方贡献的行业知识库,所以我会选择R语言,我会把R语言作为最好的工具,进行量化投资的分析。

2. 常用量化投资工具包

R语言在金融领域提供了很多的金融计算框架和工具,当你具备金融理论知识和市场经验,你可以利用这些第三方提供的技术框架来构建自己的金融模型。我们可以从CRAN上找到各种的金融项目,访问R的官方网站 (https://cran.r-project.org/),找到Task Views 菜单里的 Finance标签。

task

金融领域涉及范围是非常广的,包括银行业、保险业、信托业、证券业、租赁业等。金融行业都具有指标性、垄断性、高风险性、效益依赖性和高负债经营性的特点。量化投资是证券投资的一个很细分的专业领域,涉及到的金融工具包其实并不是太多。我们其实能把这些工具包研究好了,就可以方便地做量化的模型和交易了。

如果我们想用R构建自己的量化交易系统,你需要用到5方面的R语言工具包:数据管理、指标计算、回测交易、投资组合、风险管理。

quant-lib

  • 数据管理:包括数据集抓取、存储、读取、时间序列、数据处理等,涉及R包有 zoo(时间序列对象), xts(时间序列处理), timeSeries(Rmetrics系时间序列对象) timeDate(Rmetrics系时间序列处理), data.table(数据处理), quantmod(数据下载和图形可视化), RQuantLib(QuantLib数据接口), WindR(Wind数据接口), RJDBC(数据库访问接口), rhadoop(Hadoop访问接口), rhive(Hive访问接口), rredis(Redis访问接口), rmongodb(MongoDB访问接口), SparkR(Spark访问接口),fImport(Rmetrics系数据访问接口)等。
  • 指标计算:包括金融市场的技术指标的各种计算方法,涉及R包有 TTR(技术指标), TSA(时间序列计算), urca(单位根检验), fArma(Rmetrics系ARMA计算), fAsianOptions(Rmetrics系亚洲期权定价), fBasics(Rmetrics系计算工具), fCopulae(Rmetrics系财务分析), fExoticOptions(Rmetrics系期权计算), fGarch(Rmetrics系Garch模型), fNonlinear(Rmetrics系非线模型), fOptions(Rmetrics系期权定价), fRegression(Rmetrics系回归分析), fUnitRoots(Rmetrics系单位根检验) 等。
  • 回测交易:包括金融数据建模,并验证用历史数据验证模型的可靠性,涉及R包有 FinancialInstrument(金融产品), quantstrat(策略模型和回测), blotter(账户管理), fTrading(Rmetrics系交易分析)等。
  • 投资组合:对多策略或多模型进行管理和优化,涉及R包有 PortfolioAnalytics(组合分析和优化), stockPortfolio(股票组合管理), fAssets(Rmetrics系组合管理)等
  • 风险管理:对持仓进行风险指标的计算和风险提示,涉及R包有 PerformanceAnalytics(风险分析),fPortfolio(Rmetrics系组合优化), fExtremes(Rmetrics系数据处理)等。

基于上文中列出的R包,我们可以选择使用独立地第三方R包来构建我们的量化交易的系统,也可以选用完整的Rmetrics体系来构建量化交易的系统。这两类R包也可以混合使用,如果在混用时,由于他们基于的时间序列的底层对象是不一样的,那么类型转换的时候,可以你需要花点功夫处理一下。

上文中列出的R语言,并不是所有的R语言量化投资的R包,仅仅我关注的一些包。还有很多其他的,比如用于配对交易的包PairTrading;在Github上发布的,我并没有发现的R包等。

对于我自己来说,倾向于用独立地第三方R包来做量化交易系统,会用到其中的几个独立的R包。这样选择的主要原因有2个,一是中国市场比较特别,很多规则并不完全符合世界的标准。比如,股票T+1交易就是全球唯一的。另外一点是第三方的开源包,有一些可能有错误,所以你不应该把程序完全依赖于第三方包,要有独立的思考和判断,第三方包只是给我们提供了便利性。

那么常用的第三方R包的组合为:zoo, xts, TTR, quantmod, FinancialInstrument, quantstrat, blotter, PortfolioAnalytics, PerformanceAnalytics。这其中的任何一个包,都可以被替换或自己实现,从而保证自己量化交易系统的独特性。引用国外量化的教材上的一张图,国外用R来研究量化交易已经体系。

quantitative-analysis

图片摘自Introduction to Trading Systems,作者Guy Yollin。

本系列文章,稍后将对整个量化体系的金融R包进行全面的介绍,并加上我自己的理解。量化相关R包介绍的相关文章列表,持续更新中。。。

数据管理

策略模型

量化交易一条程序员可以利用技术优势,突破自己过上幸福生活的一条路,很艰难也很兴奋。我会一直坚持,希望路上的朋友一起加油!

转载请注明出处:
http://blog.fens.me/r-quant-packages/

打赏作者

plot.xts时间序列可视化

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-xts-xtsextra/

xtsExtra-r

前言

r-bloggers的一篇博文,让我有动力继续发现xts的强大。xts扩展了zoo的基础数据结构,并提供了更丰富的功能函数。xtsExtra补充库,从可视化的角度出发,提供了一个简单而效果非凡的作图函数plot.xts。

本文将用plot.xts来演示,xts对象的时间序列可视化!

目录

  1. xtsExtra介绍
  2. xtsExtra安装
  3. plot.xts的使用

1. xtsExtra介绍

xtsExtra是xts包的功能补充包,该软件包在Google Summer of Code 2012被开发,最终将合并到xts包。xtsExtra提供的主要功能就是plot.xts。

注:我发现xts::plot.xts的函数,与xtsExtra::plot.xts还是有差别的。

关于xts包的介绍,请参考文章:可扩展的时间序列xts

下面我们安装xtsExtra包。

2. xtsExtra安装

由于xtsExtra没有发布到CRAN,我们要从R-Forge下载。


~ R

> install.packages("xtsExtra", repos="http://R-Forge.R-project.org")
Warning in install.packages :
  package ‘xtsExtra’ is not available (for R version 3.0.1)
trying URL 'http://R-Forge.R-project.org/bin/windows/contrib/3.0/xtsExtra_0.0-1.zip'
Content type 'application/zip' length 242682 bytes (236 Kb)
opened URL
downloaded 236 Kb

package ‘xtsExtra’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in
	C:\Users\Administrator\AppData\Local\Temp\Rtmp04stLd\downloaded_packages

加载xtsExtra


> library(xtsExtra)
载入需要的程辑包:zoo

载入程辑包:‘zoo’

下列对象被屏蔽了from ‘package:base’:

    as.Date, as.Date.numeric

载入需要的程辑包:xts

载入程辑包:‘xtsExtra’

下列对象被屏蔽了from ‘package:xts’:

    plot.xts

Warning messages:
1: 程辑包‘zoo’是用R版本3.0.2 来建造的 
2: 程辑包‘xts’是用R版本3.0.2 来建造的 

plot.xts函数被用来,覆盖xts::plot.xts函数。

3. plot.xts的使用

  • 1). plot.xts的参数列表
  • 2). 简单的时间序列
  • 3). K线图
  • 4). panel配置
  • 5). screens配置
  • 6). events配置
  • 7). 双时间序列
  • 9). barplot

1). plot.xts的参数列表


> names(formals(plot.xts))
 [1] "x"              "y"              "screens"        "layout.screens" "..."           
 [6] "yax.loc"        "auto.grid"      "major.ticks"    "minor.ticks"    "major.format"  
[11] "bar.col.up"     "bar.col.dn"     "candle.col"     "xy.labels"      "xy.lines"      
[16] "ylim"           "panel"          "auto.legend"    "legend.names"   "legend.loc"    
[21] "legend.pars"    "events"         "blocks"         "nc"             "nr"       

2). 简单的时间序列


> data(sample_matrix)
> sample_xts <- as.xts(sample_matrix)
> plot(sample_xts[,1]) 
> class(sample_xts[,1])
[1] "xts" "zoo"

plot.xts-basic

3). K线图

红白色


> plot(sample_xts[1:30, ], type = "candles")

plot.xts-red

自定义颜色


> plot(sample_xts[1:30, ], type = "candles", bar.col.up = "blue", bar.col.dn = "violet", candle.col = "green4")

plot.xts-col

4). panel配置
基本面板


> plot(sample_xts[,1:2]) 

plot.xts-panel

多行面板


> plot(sample_xts[,rep(1:4, each = 3)]) 

plot.xts-mpanel

自由组合面板


> plot(sample_xts[,1:4], layout.screens = matrix(c(1,1,1,1,2,3,4,4),ncol = 2, byrow = TRUE))

plot.xts-cpanel

5). screens配置

双屏幕显示,每屏幕2条线


> plot(sample_xts, screens = 1:2) 

plot.xts-screen

双屏幕显示,指定曲线出现的屏幕和颜色


> plot(sample_xts, screens = c(1,2,1,2), col = c(1,3,2,2))

plot.xts-screen-4

双屏幕显示,指定不同的坐标系


> plot(10^sample_xts, screens = 1:2, log= c("","y"))

plot.xts-screen-axis

双屏幕显示,指定不同的输出图形


> plot(sample_xts[1:75,1:2] - 50.5, type = c("l","h"), lwd = c(1,2))

plot.xts-screen-chart

多屏幕,分组显示


> plot(sample_xts[,c(1:4, 3:4)], layout = matrix(c(1,1,1,1,2,2,3,4,5,6), ncol = 2, byrow = TRUE), yax.loc = "left")

plot.xts-screen-mg

6). events配置

基本事件分割线


> plot(sample_xts[,1], events = list(time = c("2007-03-15","2007-05-01"), label = "bad days"), blocks = list(start.time = c("2007-03-05", "2007-04-15"), end.time = c("2007-03-20","2007-05-30"), col = c("lightblue1", "lightgreen")))

plot.xts-event

7). 双时间序列

双坐标视图


> plot(sample_xts[,1],sample_xts[,2])

plot.xts-scatter

双坐标梯度视图


> cr <- colorRampPalette(c("#00FF00","#FF0000"))
> plot(sample_xts[,1],sample_xts[,2], xy.labels = FALSE, xy.lines = TRUE, col = cr(NROW(sample_xts)), type = "l")

plot.xts-gradient

8). xts类型转换作图
ts类型作图


> tser <- ts(cumsum(rnorm(50, 0.05, 0.15)), start = 2007, frequency = 12)
> class(tser)
[1] "ts"
> plot(tser)

plot.xts-ts

以xts类型作图


> plot.xts(tser)

plot.xts-ts-xts

9). barplot


> x <- xts(matrix(abs(rnorm(72)), ncol = 6), Sys.Date() + 1:12)
> colnames(x) <- LETTERS[1:6]
> barplot(x)

plot.xts-barplot

我们看到xtsExtra::plot.xts提供了强大的作图功能,很容易做出可视的时间序列!

转载请注明出处:
http://blog.fens.me/r-xts-xtsextra/

打赏作者

可扩展的时间序列xts

R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。

要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/r-xts/

r-xts

前言

本文是继R语言zoo时间序列基础库的扩展实现。看上去简单的时间序列,内藏复杂的规律。zoo作为时间序列的基础库,是面向通用的设计,可以用来定义股票数据,也可以分析天气数据。但由于业务行为的不同,我们需要更多的辅助函数,来帮助我们更高效的完成任务。

xts扩展了zoo,提供更多的数据处理和数据变换的函数。

目录

  1. xts介绍
  2. xts安装
  3. xts数据结构
  4. xts的API介绍
  5. xts使用

1. xts介绍

xts是对时间序列数据(zoo)的一种扩展实现,目标是为了统一时间序列的操作接口。实际上,xts类型继承了zoo类型,丰富了时间序列数据处理的函数,API定义更贴近使用者,更实用,更简单!

xts项目地址:http://r-forge.r-project.org/projects/xts/

2. xts安装

系统环境

  • Win7 64bit
  • R: 3.0.1 x86_64-w64-mingw32/x64 b4bit

xts安装


> install.packages("xts")
also installing the dependency ‘zoo’

trying URL 'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/zoo_1.7-10.zip'
Content type 'application/zip' length 875046 bytes (854 Kb)
opened URL
downloaded 854 Kb

trying URL 'http://mirror.bjtu.edu.cn/cran/bin/windows/contrib/3.0/xts_0.9-7.zip'
Content type 'application/zip' length 661664 bytes (646 Kb)
opened URL
downloaded 646 Kb

package ‘zoo’ successfully unpacked and MD5 sums checked
package ‘xts’ successfully unpacked and MD5 sums checked

3. xts数据结构

xts-structure

xts扩展zoo的基础结构,由3部分组合。

  • 索引部分:时间类型向量
  • 数据部分:以矩阵为基础类型,支持可以与矩阵相互转换的任何类型
  • 属性部分:附件信息,包括时区,索引时间类型的格式等

4. xts的API介绍

xts基础

  • xts: 定义xts数据类型,继承zoo类型
  • coredata.xts: 对xts部分数据赋值
  • xtsAttributes: xts对象属性赋值
  • [.xts: 用[]语法,取数据子集
  • dimnames.xts: xts维度名赋值
  • sample_matrix: 测试数据集,包括180条xts对象的记录,matrix类型
  • xtsAPI: C语言API接口

类型转换

  • as.xts: 转换对象到xts(zoo)类型
  • as.xts.methods: 转换对象到xts函数
  • plot.xts: 为plot函数,提供xts的接口作图
  • .parseISO8601: 把字符串(ISO8601格式)输出为,POSIXct类型的,包括开始时间和结束时间的list对象
  • firstof: 创建一个开始时间,POSIXct类型
  • lastof: 创建一个结束时间,POSIXct类型
  • indexClass: 取索引类型
  • .indexDate: 取索引的
  • .indexday: 索引的日值
  • .indexyday: 索引的年(日)值
  • .indexmday: 索引的月(日)值
  • .indexwday: 索引的周(日)值
  • .indexweek: 索引的周值
  • .indexmon: 索引的月值
  • .indexyear: 索引的年值
  • .indexhour: 索引的时值
  • .indexmin: 索引的分值
  • .indexsec: 索引的秒值

数据处理

  • align.time: 以下一个时间对齐数据,秒,分钟,小时
  • endpoints: 按时间单元提取索引数据
  • merge.xts: 合并多个xts对象,重写zoo::merge.zoo函数
  • rbind.xts: 数据按行合并,为rbind函数,提供xts的接口
  • split.xts: 数据分隔,为split函数,提供xts的接口
  • na.locf.xts: 替换NA值,重写zoo:na.locf函数

数据统计

  • apply.daily: 按日分割数据,执行函数
  • apply.weekly: 按周分割数据,执行函数
  • apply.monthly: 按月分割数据,执行函数
  • apply.quarterly: 按季分割数据,执行函数
  • apply.yearly: 按年分割数据,执行函数
  • to.period: 按期间分割数据
  • period.apply: 按期间执行自定义函数
  • period.max: 按期间计算最大值
  • period.min: 按期间计算最小值
  • period.prod: 按期间计算指数
  • period.sum: 按期间求和
  • nseconds: 计算数据集,包括多少秒
  • nminutes: 计算数据集,包括多少分
  • nhours: 计算数据集,包括多少时
  • ndays: 计算数据集,包括多少日
  • nweeks: 计算数据集,包括多少周
  • nmonths: 计算数据集,包括多少月
  • nquarters: 计算数据集,包括多少季
  • nyears: 计算数据集,包括多少年
  • periodicity: 查看时间序列的期间

辅助工具

  • first: 从开始到结束,设置条件取子集
  • last: 从结束到开始,设置条件取子集
  • timeBased: 判断是否是时间类型
  • timeBasedSeq: 创建时间的序列
  • diff.xts: 计算步长和差分
  • isOrdered: 检查向量是否是顺序的
  • make.index.unique: 强制时间唯一,增加毫秒随机数
  • axTicksByTime: 计算X轴刻度标记位置按时间描述
  • indexTZ: 查询xts对象的时区

5. xts使用

  • 1). xts类型基本操作
  • 2). xts的作图
  • 3). xts类型转换
  • 4). xts数据处理
  • 5). xts数据统计计算
  • 6). xts时间序列工具使用

1). xts类型基本操作

测试数据集sample_matrix


> library(xts)
> data(sample_matrix)
> head(sample_matrix)
               Open     High      Low    Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

定义xts类型对象


> sample.xts <- as.xts(sample_matrix, descr='my new xts object')
> class(sample.xts)
[1] "xts" "zoo"

> str(sample.xts)
An ‘xts’ object on 2007-01-02/2007-06-30 containing:
  Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "Open" "High" "Low" "Close"
  Indexed by objects of class: [POSIXct,POSIXt] TZ: 
  xts Attributes:  
List of 1
 $ descr: chr "my new xts object"

> head(sample.xts)
               Open     High      Low    Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

> attr(sample.xts,'descr')
[1] "my new xts object"

xts数据查询


> head(sample.xts['2007'])
               Open     High      Low    Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185

> head(sample.xts['2007-03/'])
               Open     High      Low    Close
2007-03-01 50.81620 50.81620 50.56451 50.57075
2007-03-02 50.60980 50.72061 50.50808 50.61559
2007-03-03 50.73241 50.73241 50.40929 50.41033
2007-03-04 50.39273 50.40881 50.24922 50.32636
2007-03-05 50.26501 50.34050 50.26501 50.29567
2007-03-06 50.27464 50.32019 50.16380 50.16380

> head(sample.xts['2007-03-06/2007'])
               Open     High      Low    Close
2007-03-06 50.27464 50.32019 50.16380 50.16380
2007-03-07 50.14458 50.20278 49.91381 49.91381
2007-03-08 49.93149 50.00364 49.84893 49.91839
2007-03-09 49.92377 49.92377 49.74242 49.80712
2007-03-10 49.79370 49.88984 49.70385 49.88698
2007-03-11 49.83062 49.88295 49.76031 49.78806

> sample.xts['2007-01-03']
              Open     High     Low    Close
2007-01-03 50.2305 50.42188 50.2305 50.39767

2). 操作xts的作图

曲线图


> data(sample_matrix)
> plot(sample_matrix)

> plot(as.xts(sample_matrix))
Warning message:
In plot.xts(as.xts(sample_matrix)) :
  only the univariate series will be plotted

plot-line

K线图


> plot(as.xts(sample_matrix), type='candles')

plot-candles

3). xts类型转换

分别创建首尾时间:firstof, lastof


> firstof(2000)
[1] "2000-01-01 CST"

> firstof(2005,01,01)
[1] "2005-01-01 CST"

> lastof(2007)
[1] "2007-12-31 23:59:59.99998 CST"

> lastof(2007,10)
[1] "2007-10-31 23:59:59.99998 CST"

创建首尾时间


> .parseISO8601('2000')
$first.time
[1] "2000-01-01 CST"

$last.time
[1] "2000-12-31 23:59:59.99998 CST"

> .parseISO8601('2000-05/2001-02')
$first.time
[1] "2000-05-01 CST"

$last.time
[1] "2001-02-28 23:59:59.99998 CST"

> .parseISO8601('2000-01/02')
$first.time
[1] "2000-01-01 CST"

$last.time
[1] "2000-02-29 23:59:59.99998 CST"

> .parseISO8601('T08:30/T15:00')
$first.time
[1] "1970-01-01 08:30:00 CST"

$last.time
[1] "1970-12-31 15:00:59.99999 CST"

取索引类型


> x <- timeBasedSeq('2010-01-01/2010-01-02 12:00')
> x <- xts(1:length(x), x)

> head(x)
                    [,1]
2010-01-01 00:00:00    1
2010-01-01 00:01:00    2
2010-01-01 00:02:00    3
2010-01-01 00:03:00    4
2010-01-01 00:04:00    5
2010-01-01 00:05:00    6

> indexClass(x)
[1] "POSIXt"  "POSIXct"

索引时间格式化


> indexFormat(x) <- "%Y-%b-%d %H:%M:%OS3"
> head(x)
                          [,1]
2010-一月-01 00:00:00.000    1
2010-一月-01 00:01:00.000    2
2010-一月-01 00:02:00.000    3
2010-一月-01 00:03:00.000    4
2010-一月-01 00:04:00.000    5
2010-一月-01 00:05:00.000    6

取索引时间


> .indexhour(head(x))
[1] 0 0 0 0 0 0

> .indexmin(head(x))
[1] 0 1 2 3 4 5

4). xts数据处理
数据对齐


> x <- Sys.time() + 1:30

#整10秒对齐
> align.time(x, 10)
 [1] "2013-11-18 15:42:30 CST" "2013-11-18 15:42:30 CST"
 [3] "2013-11-18 15:42:30 CST" "2013-11-18 15:42:40 CST"
 [5] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
 [7] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
 [9] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
[11] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:40 CST"
[13] "2013-11-18 15:42:40 CST" "2013-11-18 15:42:50 CST"
[15] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[17] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[19] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[21] "2013-11-18 15:42:50 CST" "2013-11-18 15:42:50 CST"
[23] "2013-11-18 15:42:50 CST" "2013-11-18 15:43:00 CST"
[25] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[27] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[29] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"

#整60秒对齐
> align.time(x, 60)
 [1] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [3] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [5] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [7] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
 [9] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[11] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[13] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[15] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[17] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[19] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[21] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[23] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[25] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[27] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"
[29] "2013-11-18 15:43:00 CST" "2013-11-18 15:43:00 CST"

按时间分割数据,并计算


> xts.ts <- xts(rnorm(231),as.Date(13514:13744,origin="1970-01-01"))
> apply.monthly(xts.ts,mean)
                  [,1]
2007-01-31  0.17699984
2007-02-28  0.30734220
2007-03-31 -0.08757189
2007-04-30  0.18734688
2007-05-31  0.04496954
2007-06-30  0.06884836
2007-07-31  0.25081814
2007-08-19 -0.28845938

> apply.monthly(xts.ts,function(x) var(x))
                [,1]
2007-01-31 0.9533217
2007-02-28 0.9158947
2007-03-31 1.2821450
2007-04-30 1.2805976
2007-05-31 0.9725438
2007-06-30 1.5228904
2007-07-31 0.8737030
2007-08-19 0.8490521

> apply.quarterly(xts.ts,mean)
                 [,1]
2007-03-31 0.12642053
2007-06-30 0.09977926
2007-08-19 0.04589268

> apply.yearly(xts.ts,mean)
                 [,1]
2007-08-19 0.09849522

按期间分隔:to.period


> data(sample_matrix)
> to.period(sample_matrix)
           sample_matrix.Open sample_matrix.High sample_matrix.Low sample_matrix.Close
2007-01-31           50.03978           50.77336          49.76308            50.22578
2007-02-28           50.22448           51.32342          50.19101            50.77091
2007-03-31           50.81620           50.81620          48.23648            48.97490
2007-04-30           48.94407           50.33781          48.80962            49.33974
2007-05-31           49.34572           49.69097          47.51796            47.73780
2007-06-30           47.74432           47.94127          47.09144            47.76719
> class(to.period(sample_matrix))
[1] "matrix"

> samplexts <- as.xts(sample_matrix)
> to.period(samplexts)
           samplexts.Open samplexts.High samplexts.Low samplexts.Close
2007-01-31       50.03978       50.77336      49.76308        50.22578
2007-02-28       50.22448       51.32342      50.19101        50.77091
2007-03-31       50.81620       50.81620      48.23648        48.97490
2007-04-30       48.94407       50.33781      48.80962        49.33974
2007-05-31       49.34572       49.69097      47.51796        47.73780
2007-06-30       47.74432       47.94127      47.09144        47.76719
> class(to.period(samplexts))
[1] "xts" "zoo"

按期间分割索引数据


> data(sample_matrix)

> endpoints(sample_matrix)
[1]   0  30  58  89 119 150 180

> endpoints(sample_matrix, 'days',k=7)
 [1]   0   6  13  20  27  34  41  48  55  62  69  76  83  90  97 104 111 118 125
[20] 132 139 146 153 160 167 174 180

> endpoints(sample_matrix, 'weeks')
 [1]   0   7  14  21  28  35  42  49  56  63  70  77  84  91  98 105 112 119 126
[20] 133 140 147 154 161 168 175 180

> endpoints(sample_matrix, 'months')
[1]   0  30  58  89 119 150 180

数据合并:按列合并


> (x <- xts(4:10, Sys.Date()+4:10))
           [,1]
2013-11-22    4
2013-11-23    5
2013-11-24    6
2013-11-25    7
2013-11-26    8
2013-11-27    9
2013-11-28   10

> (y <- xts(1:6, Sys.Date()+1:6))
           [,1]
2013-11-19    1
2013-11-20    2
2013-11-21    3
2013-11-22    4
2013-11-23    5
2013-11-24    6

> merge(x,y)
            x  y
2013-11-19 NA  1
2013-11-20 NA  2
2013-11-21 NA  3
2013-11-22  4  4
2013-11-23  5  5
2013-11-24  6  6
2013-11-25  7 NA
2013-11-26  8 NA
2013-11-27  9 NA
2013-11-28 10 NA

#取索引将领合并
> merge(x,y, join='inner')
           x y
2013-11-22 4 4
2013-11-23 5 5
2013-11-24 6 6

#以左侧为基础合并
> merge(x,y, join='left')
            x  y
2013-11-22  4  4
2013-11-23  5  5
2013-11-24  6  6
2013-11-25  7 NA
2013-11-26  8 NA
2013-11-27  9 NA
2013-11-28 10 NA

数据合并:按行合并


> x <- xts(1:3, Sys.Date()+1:3)

> rbind(x,x)
           [,1]
2013-11-19    1
2013-11-19    1
2013-11-20    2
2013-11-20    2
2013-11-21    3
2013-11-21    3

数据切片:按行切片


> data(sample_matrix)
> x <- as.xts(sample_matrix)

按月切片
> split(x)[[1]]
               Open     High      Low    Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185
2007-01-08 50.03555 50.10363 49.96971 49.98806
2007-01-09 49.99489 49.99489 49.80454 49.91333
2007-01-10 49.91228 50.13053 49.91228 49.97246
2007-01-11 49.88529 50.23910 49.88529 50.23910
2007-01-12 50.21258 50.35980 50.17176 50.28519
2007-01-13 50.32385 50.48000 50.32385 50.41286
2007-01-14 50.46359 50.62395 50.46359 50.60145
2007-01-15 50.61724 50.68583 50.47359 50.48912
2007-01-16 50.62024 50.73731 50.56627 50.67835
2007-01-17 50.74150 50.77336 50.44932 50.48644
2007-01-18 50.48051 50.60712 50.40269 50.57632
2007-01-19 50.41381 50.55627 50.41278 50.41278
2007-01-20 50.35323 50.35323 50.02142 50.02142
2007-01-21 50.16188 50.42090 50.16044 50.42090
2007-01-22 50.36008 50.43875 50.21129 50.21129
2007-01-23 50.03966 50.16961 50.03670 50.16961
2007-01-24 50.10953 50.26942 50.06387 50.23145
2007-01-25 50.20738 50.28268 50.12913 50.24334
2007-01-26 50.16008 50.16008 49.94052 50.07024
2007-01-27 50.06041 50.09777 49.97267 50.01091
2007-01-28 49.96586 50.00217 49.87468 49.88096
2007-01-29 49.85624 49.93038 49.76308 49.91875
2007-01-30 49.85477 50.02180 49.77242 50.02180
2007-01-31 50.07049 50.22578 50.07049 50.22578

按周切片
> split(x, f="weeks")[[1]]
               Open     High      Low    Close
2007-01-02 50.03978 50.11778 49.95041 50.11778
2007-01-03 50.23050 50.42188 50.23050 50.39767
2007-01-04 50.42096 50.42096 50.26414 50.33236
2007-01-05 50.37347 50.37347 50.22103 50.33459
2007-01-06 50.24433 50.24433 50.11121 50.18112
2007-01-07 50.13211 50.21561 49.99185 49.99185
2007-01-08 50.03555 50.10363 49.96971 49.98806
> split(x, f="weeks")[[2]]
               Open     High      Low    Close
2007-01-09 49.99489 49.99489 49.80454 49.91333
2007-01-10 49.91228 50.13053 49.91228 49.97246
2007-01-11 49.88529 50.23910 49.88529 50.23910
2007-01-12 50.21258 50.35980 50.17176 50.28519
2007-01-13 50.32385 50.48000 50.32385 50.41286
2007-01-14 50.46359 50.62395 50.46359 50.60145
2007-01-15 50.61724 50.68583 50.47359 50.48912

NA值处理


> x <- xts(1:10, Sys.Date()+1:10)
> x[c(1,2,5,9,10)] <- NA
> x
           [,1]
2013-11-19   NA
2013-11-20   NA
2013-11-21    3
2013-11-22    4
2013-11-23   NA
2013-11-24    6
2013-11-25    7
2013-11-26    8
2013-11-27   NA
2013-11-28   NA

#取前一个
> na.locf(x)
           [,1]
2013-11-19   NA
2013-11-20   NA
2013-11-21    3
2013-11-22    4
2013-11-23    4
2013-11-24    6
2013-11-25    7
2013-11-26    8
2013-11-27    8
2013-11-28    8

#取后一个
> na.locf(x, fromLast=TRUE)
           [,1]
2013-11-19    3
2013-11-20    3
2013-11-21    3
2013-11-22    4
2013-11-23    6
2013-11-24    6
2013-11-25    7
2013-11-26    8
2013-11-27   NA
2013-11-28   NA

5). xts数据统计计算

取开始时间,结束时间


> xts.ts <- xts(rnorm(231),as.Date(13514:13744,origin="1970-01-01"))

> start(xts.ts)
[1] "2007-01-01"
> end(xts.ts)
[1] "2007-08-19"

> periodicity(xts.ts)
Daily periodicity from 2007-01-01 to 2007-08-19 

计算时间区间


> data(sample_matrix)
> ndays(sample_matrix)
[1] 180
> nweeks(sample_matrix)
[1] 26
> nmonths(sample_matrix)
[1] 6
> nquarters(sample_matrix)
[1] 2
> nyears(sample_matrix)
[1] 1

按期间计算统计指标


> zoo.data <- zoo(rnorm(31)+10,as.Date(13514:13744,origin="1970-01-01"))

#按周获得期间
> ep <- endpoints(zoo.data,'weeks')
> ep
 [1]   0   7  14  21  28  35  42  49  56  63  70  77  84  91  98 105 112 119
[19] 126 133 140 147 154 161 168 175 182 189 196 203 210 217 224 231

#计算周的均值
> period.apply(zoo.data, INDEX=ep, FUN=function(x) mean(x))
2007-01-07 2007-01-14 2007-01-21 2007-01-28 2007-02-04 2007-02-11 2007-02-18 
 10.200488   9.649387  10.304151   9.864847  10.382943   9.660175   9.857894 
2007-02-25 2007-03-04 2007-03-11 2007-03-18 2007-03-25 2007-04-01 2007-04-08 
 10.495037   9.569531  10.292899   9.651616  10.089103   9.961048  10.304860 
2007-04-15 2007-04-22 2007-04-29 2007-05-06 2007-05-13 2007-05-20 2007-05-27 
  9.658432   9.887531  10.608082   9.747787  10.052955   9.625730  10.430030 
2007-06-03 2007-06-10 2007-06-17 2007-06-24 2007-07-01 2007-07-08 2007-07-15 
  9.814703  10.224869   9.509881  10.187905  10.229310  10.261725   9.855776 
2007-07-22 2007-07-29 2007-08-05 2007-08-12 2007-08-19 
  9.445072  10.482020   9.844531  10.200488   9.649387 

#计算周的最大值
> head(period.max(zoo.data, INDEX=ep))
               [,1]
2007-01-07 12.05912
2007-01-14 10.79286
2007-01-21 11.60658
2007-01-28 11.63455
2007-02-04 12.05912
2007-02-11 10.67887

#计算周的最小值
> head(period.min(zoo.data, INDEX=ep))
               [,1]
2007-01-07 8.874509
2007-01-14 8.534655
2007-01-21 9.069773
2007-01-28 8.461555
2007-02-04 9.421085
2007-02-11 8.534655

#计算周的一个指数值
> head(period.prod(zoo.data, INDEX=ep))
               [,1]
2007-01-07 11140398
2007-01-14  7582350
2007-01-21 11930334
2007-01-28  8658933
2007-02-04 12702505
2007-02-11  7702767

6). xts时间序列工具使用

检查时间类型


> timeBased(Sys.time())
[1] TRUE
> timeBased(Sys.Date())
[1] TRUE
> timeBased(200701)
[1] FALSE

创建时间序列


#按年
> timeBasedSeq('1999/2008')
 [1] "1999-01-01" "2000-01-01" "2001-01-01" "2002-01-01" "2003-01-01"
 [6] "2004-01-01" "2005-01-01" "2006-01-01" "2007-01-01" "2008-01-01"

#按月
> head(timeBasedSeq('199901/2008'))
[1] "十二月 1998" "一月 1999"   "二月 1999"   "三月 1999"   "四月 1999"  
[6] "五月 1999" 

#按日
> head(timeBasedSeq('199901/2008/d'),40)
 [1] "十二月 1998" "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"  
 [6] "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"  
[11] "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"  
[16] "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"  
[21] "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"  
[26] "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"   "一月 1999"  
[31] "一月 1999"   "一月 1999"   "二月 1999"   "二月 1999"   "二月 1999"  
[36] "二月 1999"   "二月 1999"   "二月 1999"   "二月 1999"   "二月 1999" 

#按数量创建,100分钟的数据集
> timeBasedSeq('20080101 0830',length=100)
$from
[1] "2008-01-01 08:30:00 CST"
$to
[1] NA
$by
[1] "mins"
$length.out
[1] 100

按索引取数据first, last


> x <- xts(1:100, Sys.Date()+1:100)

> head(x)
           [,1]
2013-11-19    1
2013-11-20    2
2013-11-21    3
2013-11-22    4
2013-11-23    5
2013-11-24    6

> first(x, 10)
           [,1]
2013-11-19    1
2013-11-20    2
2013-11-21    3
2013-11-22    4
2013-11-23    5
2013-11-24    6
2013-11-25    7
2013-11-26    8
2013-11-27    9
2013-11-28   10

> first(x, '1 day')
           [,1]
2013-11-19    1

> last(x, '1 weeks')
           [,1]
2014-02-24   98
2014-02-25   99
2014-02-26  100

计算步长和差分


> x <- xts(1:5, Sys.Date()+1:5)
#正向
> lag(x)
           [,1]
2013-11-19   NA
2013-11-20    1
2013-11-21    2
2013-11-22    3
2013-11-23    4

#反向
> lag(x, k=-1, na.pad=FALSE) 
           [,1]
2013-11-19    2
2013-11-20    3
2013-11-21    4
2013-11-22    5

#1阶差分
> diff(x)
           [,1]
2013-11-19   NA
2013-11-20    1
2013-11-21    1
2013-11-22    1
2013-11-23    1

#2阶差分
> diff(x, lag=2)
           [,1]
2013-11-19   NA
2013-11-20   NA
2013-11-21    2
2013-11-22    2
2013-11-23    2

检查向量是否排序好的


> isOrdered(1:10, increasing=TRUE)
[1] TRUE

> isOrdered(1:10, increasing=FALSE)
[1] FALSE

> isOrdered(c(1,1:10), increasing=TRUE)
[1] FALSE

> isOrdered(c(1,1:10), increasing=TRUE, strictly=FALSE)
[1] TRUE

强制唯一索引


> x <- xts(1:5, as.POSIXct("2011-01-21") + c(1,1,1,2,3)/1e3)
> x
                        [,1]
2011-01-21 00:00:00.000    1
2011-01-21 00:00:00.000    2
2011-01-21 00:00:00.000    3
2011-01-21 00:00:00.002    4
2011-01-21 00:00:00.003    5

> make.index.unique(x)
                           [,1]
2011-01-21 00:00:00.000999    1
2011-01-21 00:00:00.001000    2
2011-01-21 00:00:00.001001    3
2011-01-21 00:00:00.002000    4
2011-01-21 00:00:00.003000    5

查询xts对象时区


> x <- xts(1:10, Sys.Date()+1:10)

> indexTZ(x)
[1] "UTC"
> tzone(x)
[1] "UTC"

> str(x)
An ‘xts’ object on 2013-11-19/2013-11-28 containing:
  Data: int [1:10, 1] 1 2 3 4 5 6 7 8 9 10
  Indexed by objects of class: [Date] TZ: UTC
  xts Attributes:  
 NULL

xts给了zoo类型时间序列更多的API支持,这样我们就有了更方便的工具,可以做各种的时间序列的转换和变形了。

转载请注明出处:
http://blog.fens.me/r-xts/

打赏作者